© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n183
L11n183
L11n185
L11n185
L11n184
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n184

Visit L11n184's page at Knotilus!

Acknowledgement

L11n184 as Morse Link
DrawMorseLink

PD Presentation: X8192 X9,21,10,20 X6,21,1,22 X18,8,19,7 X3,10,4,11 X15,12,16,13 X5,14,6,15 X13,4,14,5 X11,16,12,17 X22,18,7,17 X19,2,20,3

Gauss Code: {{1, 11, -5, 8, -7, -3}, {4, -1, -2, 5, -9, 6, -8, 7, -6, 9, 10, -4, -11, 2, 3, -10}}

Jones Polynomial: - q-17/2 + 2q-15/2 - 3q-13/2 + 4q-11/2 - 5q-9/2 + 4q-7/2 - 5q-5/2 + 3q-3/2 - 2q-1/2 + q1/2

A2 (sl(3)) Invariant: q-26 - q-18 + 2q-16 + 2q-14 + 3q-12 + 3q-10 + q-8 + q-6 - q-4 - q-2 - q2

HOMFLY-PT Polynomial: az-1 + 2az + az3 - 3a3z-1 - 6a3z - 4a3z3 - a3z5 + 2a5z-1 - a5z - 3a5z3 - a5z5 + 2a7z + a7z3

Kauffman Polynomial: 1 - z2 - az-1 + 2az - 2az3 + 3a2 - 6a2z2 + 3a2z4 - a2z6 - 3a3z-1 + 10a3z - 13a3z3 + 8a3z5 - 2a3z7 + 3a4 - 2a4z2 - 5a4z4 + 7a4z6 - 2a4z8 - 2a5z-1 + 7a5z - 14a5z3 + 9a5z5 + a5z7 - a5z9 + 9a6z2 - 22a6z4 + 18a6z6 - 4a6z8 + 2a7z - 10a7z3 + 6a7z5 + 2a7z7 - a7z9 + 6a8z2 - 14a8z4 + 10a8z6 - 2a8z8 + 3a9z - 7a9z3 + 5a9z5 - a9z7

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1
j = 2         1
j = 0        1 
j = -2       32 
j = -4      2   
j = -6     23   
j = -8    32    
j = -10   12     
j = -12  23      
j = -14 12       
j = -16 1        
j = -181         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 184]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 184]]
Out[4]=   
PD[X[8, 1, 9, 2], X[9, 21, 10, 20], X[6, 21, 1, 22], X[18, 8, 19, 7], 
 
>   X[3, 10, 4, 11], X[15, 12, 16, 13], X[5, 14, 6, 15], X[13, 4, 14, 5], 
 
>   X[11, 16, 12, 17], X[22, 18, 7, 17], X[19, 2, 20, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 11, -5, 8, -7, -3}, 
 
>   {4, -1, -2, 5, -9, 6, -8, 7, -6, 9, 10, -4, -11, 2, 3, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(17/2)     2       3       4      5      4      5      3        2
-q        + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 
             15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q       q      q      q      q
 
>   Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -26    -18    2     2     3     3     -8    -6    -4    -2    2
q    - q    + --- + --- + --- + --- + q   + q   - q   - q   - q
               16    14    12    10
              q     q     q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 184]][a, z]
Out[8]=   
       3      5
a   3 a    2 a               3      5        7        3      3  3      5  3
- - ---- + ---- + 2 a z - 6 a  z - a  z + 2 a  z + a z  - 4 a  z  - 3 a  z  + 
z    z      z
 
     7  3    3  5    5  5
>   a  z  - a  z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 184]][a, z]
Out[9]=   
                         3      5
       2      4   a   3 a    2 a                3        5        7
1 + 3 a  + 3 a  - - - ---- - ---- + 2 a z + 10 a  z + 7 a  z + 2 a  z + 
                  z    z      z
 
       9      2      2  2      4  2      6  2      8  2        3       3  3
>   3 a  z - z  - 6 a  z  - 2 a  z  + 9 a  z  + 6 a  z  - 2 a z  - 13 a  z  - 
 
        5  3       7  3      9  3      2  4      4  4       6  4       8  4
>   14 a  z  - 10 a  z  - 7 a  z  + 3 a  z  - 5 a  z  - 22 a  z  - 14 a  z  + 
 
       3  5      5  5      7  5      9  5    2  6      4  6       6  6
>   8 a  z  + 9 a  z  + 6 a  z  + 5 a  z  - a  z  + 7 a  z  + 18 a  z  + 
 
        8  6      3  7    5  7      7  7    9  7      4  8      6  8
>   10 a  z  - 2 a  z  + a  z  + 2 a  z  - a  z  - 2 a  z  - 4 a  z  - 
 
       8  8    5  9    7  9
>   2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    2      1        1        1        2        2        3        1
1 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     2    18  8    16  7    14  7    14  6    12  6    12  5    10  5
    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        3       2       2       3       2      3      2
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + q  t
     10  4    8  4    8  3    6  3    6  2    4  2    2
    q   t    q  t    q  t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n184
L11n183
L11n183
L11n185
L11n185