© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n180
L11n180
L11n182
L11n182
L11n181
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n181

Visit L11n181's page at Knotilus!

Acknowledgement

L11n181 as Morse Link
DrawMorseLink

PD Presentation: X8192 X3,10,4,11 X5,14,6,15 X16,8,17,7 X22,18,7,17 X15,13,16,12 X20,10,21,9 X11,19,12,18 X13,6,14,1 X19,4,20,5 X2,21,3,22

Gauss Code: {{1, -11, -2, 10, -3, 9}, {4, -1, 7, 2, -8, 6, -9, 3, -6, -4, 5, 8, -10, -7, 11, -5}}

Jones Polynomial: - q-11/2 - 2q-5/2 + 2q-3/2 - 3q-1/2 + 3q1/2 - 2q3/2 + 2q5/2 - q7/2

A2 (sl(3)) Invariant: q-18 + 2q-16 + 3q-14 + 2q-12 + 2q-10 + 2q-8 - q-6 - q-2 - q4 - q8 + q12

HOMFLY-PT Polynomial: - a-3z + a-1z + a-1z3 + az-1 + az + az3 - 3a3z-1 - 5a3z - a3z3 + 2a5z-1 + a5z

Kauffman Polynomial: - a-3z + 3a-3z3 - a-3z5 - 5a-2z2 + 7a-2z4 - 2a-2z6 - a-1z + a-1z3 + 2a-1z5 - a-1z7 + 1 - 3z2 + 5z4 - 2z6 - az-1 + 3az3 - 2az5 + 3a2 - 4a2z2 - 3a3z-1 + 9a3z - 9a3z3 + 2a3z5 + 3a4 - 6a4z2 + 2a4z4 - 2a5z-1 + 9a5z - 14a5z3 + 7a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8          1
j = 6         1 
j = 4        11 
j = 2       21  
j = 0     121   
j = -2     23    
j = -4   121     
j = -6    2      
j = -8  11       
j = -101          
j = -121          


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 181]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 181]]
Out[4]=   
PD[X[8, 1, 9, 2], X[3, 10, 4, 11], X[5, 14, 6, 15], X[16, 8, 17, 7], 
 
>   X[22, 18, 7, 17], X[15, 13, 16, 12], X[20, 10, 21, 9], X[11, 19, 12, 18], 
 
>   X[13, 6, 14, 1], X[19, 4, 20, 5], X[2, 21, 3, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, -2, 10, -3, 9}, 
 
>   {4, -1, 7, 2, -8, 6, -9, 3, -6, -4, 5, 8, -10, -7, 11, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    2      2        3                     3/2      5/2    7/2
-q        - ---- + ---- - ------- + 3 Sqrt[q] - 2 q    + 2 q    - q
             5/2    3/2   Sqrt[q]
            q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -18    2     3     2     2    2     -6    -2    4    8    12
q    + --- + --- + --- + --- + -- - q   - q   - q  - q  + q
        16    14    12    10    8
       q     q     q     q     q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 181]][a, z]
Out[8]=   
       3      5                                   3
a   3 a    2 a    z    z            3      5     z       3    3  3
- - ---- + ---- - -- + - + a z - 5 a  z + a  z + -- + a z  - a  z
z    z      z      3   a                         a
                  a
In[9]:=
Kauffman[Link[11, NonAlternating, 181]][a, z]
Out[9]=   
                         3      5                                        2
       2      4   a   3 a    2 a    z    z      3        5        2   5 z
1 + 3 a  + 3 a  - - - ---- - ---- - -- - - + 9 a  z + 9 a  z - 3 z  - ---- - 
                  z    z      z      3   a                              2
                                    a                                  a
 
                           3    3                                           4
       2  2      4  2   3 z    z         3      3  3       5  3      4   7 z
>   4 a  z  - 6 a  z  + ---- + -- + 3 a z  - 9 a  z  - 14 a  z  + 5 z  + ---- + 
                          3    a                                           2
                         a                                                a
 
               5      5                                          6    7
       4  4   z    2 z         5      3  5      5  5      6   2 z    z     5  7
>   2 a  z  - -- + ---- - 2 a z  + 2 a  z  + 7 a  z  - 2 z  - ---- - -- - a  z
               3    a                                           2    a
              a                                                a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      1        1        1       1       1       2       2     1    1
2 + -- + ------ + ------ + ----- + ----- + ----- + ----- + ----- + - + ---- + 
     2    12  6    10  6    8  4    8  3    4  3    6  2    4  2   t    4
    q    q   t    q   t    q  t    q  t    q  t    q  t    q  t        q  t
 
     2            2      2  2    4  2    4  3    6  3    8  4
>   ---- + t + 2 q  t + q  t  + q  t  + q  t  + q  t  + q  t
     2
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n181
L11n180
L11n180
L11n182
L11n182