PD Presentation: |
X8192 X18,9,19,10 X13,21,14,20 X3,10,4,11 X5,14,6,15 X7,16,8,17 X15,22,16,7 X11,4,12,5 X19,13,20,12 X21,1,22,6 X2,18,3,17 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 178]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 178]] |
Out[4]= | PD[X[8, 1, 9, 2], X[18, 9, 19, 10], X[13, 21, 14, 20], X[3, 10, 4, 11],
> X[5, 14, 6, 15], X[7, 16, 8, 17], X[15, 22, 16, 7], X[11, 4, 12, 5],
> X[19, 13, 20, 12], X[21, 1, 22, 6], X[2, 18, 3, 17]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, -4, 8, -5, 10},
> {-6, -1, 2, 4, -8, 9, -3, 5, -7, 6, 11, -2, -9, 3, -10, 7}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 3 5 7 8 9 7 6
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 3 Sqrt[q] -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
> q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 -20 -18 -16 -14 -12 3 3 -4 2 4
2 - q + q - q + q + q - q + --- + -- + q - q + q
10 6
q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 178]][a, z] |
Out[8]= | 3
a a 3 5 3 3 3 5 3 5
-(-) + -- - 3 a z + 4 a z - 2 a z - 3 a z + 8 a z - 3 a z - a z +
z z
3 5 5 5 3 7
> 5 a z - a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 178]][a, z] |
Out[9]= | 3
2 a a 3 5 7 2 2 2 4 2 6 2
-a + - + -- - 4 a z - 6 a z - a z + a z + z + a z + a z - a z -
z z
3
8 2 z 3 3 3 5 3 7 3 4 4 4
> 2 a z - -- + 7 a z + 12 a z - 4 a z - 8 a z - 3 z - 3 a z -
a
6 4 8 4 5 3 5 5 5 7 5 2 6
> 3 a z + 3 a z - 6 a z - 6 a z + 10 a z + 10 a z - a z +
4 6 6 6 8 6 3 7 5 7 7 7 2 8 4 8
> 8 a z + 8 a z - a z + a z - 2 a z - 3 a z - a z - 4 a z -
6 8 3 9 5 9
> 3 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 1 2 1 3 2 4 3 4
4 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 8 3
q q t q t q t q t q t q t q t q t
4 5 5 3 4 2 4 2
> ----- + ----- + ----- + ---- + ---- + t + 2 q t + q t
6 3 6 2 4 2 4 2
q t q t q t q t q t |