PD Presentation: |
X8192 X3,10,4,11 X12,7,13,8 X22,15,7,16 X14,6,15,5 X6,14,1,13 X16,21,17,22 X9,18,10,19 X20,11,21,12 X4,18,5,17 X19,3,20,2 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 172]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 172]] |
Out[4]= | PD[X[8, 1, 9, 2], X[3, 10, 4, 11], X[12, 7, 13, 8], X[22, 15, 7, 16],
> X[14, 6, 15, 5], X[6, 14, 1, 13], X[16, 21, 17, 22], X[9, 18, 10, 19],
> X[20, 11, 21, 12], X[4, 18, 5, 17], X[19, 3, 20, 2]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 11, -2, -10, 5, -6},
> {3, -1, -8, 2, 9, -3, 6, -5, 4, -7, 10, 8, -11, -9, 7, -4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 3 6 8 10 11 9 8
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2
> 2 q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -24 2 2 -14 4 -10 4 3 -2 2 4 6
4 - q + --- - --- - q - --- + q + -- + -- + q - q + q + 2 q
20 18 12 6 4
q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 172]][a, z] |
Out[8]= | 3 5
1 2 a a 2 z 5 7 3 3 3 5 3
-(---) + ---- - -- - --- + 3 a z + a z - a z + 3 a z - a z + 2 a z -
a z z z a
3 5
> a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 172]][a, z] |
Out[9]= | 3 5
2 4 6 1 2 a a 4 z 3 7 2
1 - 3 a - 5 a - 2 a - --- + ---- + -- + --- + 3 a z - 2 a z + a z + z +
a z z z a
3
2 2 4 2 6 2 8 2 3 z 3 3 3
> 11 a z + 18 a z + 6 a z - 2 a z - ---- - 8 a z - 4 a z -
a
5 3 7 3 4 2 4 4 4 6 4 8 4
> 5 a z - 6 a z - 2 z - 18 a z - 29 a z - 10 a z + 3 a z +
5 3 5 5 5 7 5 6 2 6 4 6
> 5 a z + 4 a z + 8 a z + 9 a z - z + 11 a z + 25 a z +
6 6 8 6 7 3 7 5 7 7 7 2 8 4 8
> 12 a z - a z - 3 a z + a z + a z - 3 a z - 4 a z - 8 a z -
6 8 3 9 5 9
> 4 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 4 1 2 1 4 2 4 4 6
5 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 8 3
q q t q t q t q t q t q t q t q t
4 5 6 4 5 2 2 2 4 2
> ----- + ----- + ----- + ---- + ---- + t + 3 q t + q t + 2 q t
6 3 6 2 4 2 4 2
q t q t q t q t q t |