© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n165
L11n165
L11n167
L11n167
L11n166
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n166

Visit L11n166's page at Knotilus!

Acknowledgement

L11n166 as Morse Link
DrawMorseLink

PD Presentation: X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X11,19,12,18 X19,7,20,22 X15,21,16,20 X21,17,22,16 X17,13,18,12 X6718 X4,13,5,14

Gauss Code: {{1, -2, 3, -11, 4, -10}, {10, -1, 2, -3, -5, 9, 11, -4, -7, 8, -9, 5, -6, 7, -8, 6}}

Jones Polynomial: - q-13/2 + q-11/2 - 2q-9/2 + 2q-7/2 - 2q-5/2 + q-3/2 - q-1/2 - q1/2 + q3/2 - q5/2 + q7/2

A2 (sl(3)) Invariant: q-20 + 2q-16 + 2q-14 + q-12 + 2q-10 + q-6 + q-2 + 2 - q6 - q8 - q10

HOMFLY-PT Polynomial: a-1z-1 + 6a-1z + 5a-1z3 + a-1z5 - 2az-1 - 12az - 15az3 - 7az5 - az7 + a3z + a3z3 + a5z-1 + 2a5z + a5z3

Kauffman Polynomial: - 2a-2 + 11a-2z2 - 15a-2z4 + 7a-2z6 - a-2z8 + a-1z-1 - 6a-1z + 13a-1z3 - 15a-1z5 + 7a-1z7 - a-1z9 - 5 + 25z2 - 33z4 + 15z6 - 2z8 + 2az-1 - 13az + 22az3 - 20az5 + 8az7 - az9 - 3a2 + 13a2z2 - 18a2z4 + 8a2z6 - a2z8 + a4 - 2a4z2 + 3a4z4 - a4z6 - a5z-1 + 4a5z - 5a5z3 + 4a5z5 - a5z7 - a6z2 + 3a6z4 - a6z6 - 3a7z + 4a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8           1
j = 6            
j = 4         11 
j = 2       11   
j = 0      1 1   
j = -2     231    
j = -4    1       
j = -6   121      
j = -8  11        
j = -10  1         
j = -1211          
j = -141           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 166]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 166]]
Out[4]=   
PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 5, 15, 6], 
 
>   X[11, 19, 12, 18], X[19, 7, 20, 22], X[15, 21, 16, 20], X[21, 17, 22, 16], 
 
>   X[17, 13, 18, 12], X[6, 7, 1, 8], X[4, 13, 5, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -11, 4, -10}, 
 
>   {10, -1, 2, -3, -5, 9, 11, -4, -7, 8, -9, 5, -6, 7, -8, 6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)    -(11/2)    2      2      2      -(3/2)      1
-q        + q        - ---- + ---- - ---- + q       - ------- - Sqrt[q] + 
                        9/2    7/2    5/2             Sqrt[q]
                       q      q      q
 
     3/2    5/2    7/2
>   q    - q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    2     2     -12    2     -6    -2    6    8    10
2 + q    + --- + --- + q    + --- + q   + q   - q  - q  - q
            16    14           10
           q     q            q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 166]][a, z]
Out[8]=   
             5                                     3
 1    2 a   a    6 z             3        5     5 z          3    3  3
--- - --- + -- + --- - 12 a z + a  z + 2 a  z + ---- - 15 a z  + a  z  + 
a z    z    z     a                              a
 
             5
     5  3   z         5      7
>   a  z  + -- - 7 a z  - a z
            a
In[9]:=
Kauffman[Link[11, NonAlternating, 166]][a, z]
Out[9]=   
                                   5
     2       2    4    1    2 a   a    6 z               5        7         2
-5 - -- - 3 a  + a  + --- + --- - -- - --- - 13 a z + 4 a  z - 3 a  z + 25 z  + 
      2               a z    z    z     a
     a
 
        2                                    3
    11 z        2  2      4  2    6  2   13 z          3      5  3      7  3
>   ----- + 13 a  z  - 2 a  z  - a  z  + ----- + 22 a z  - 5 a  z  + 4 a  z  - 
      2                                    a
     a
 
                4                                      5
        4   15 z        2  4      4  4      6  4   15 z          5      5  5
>   33 z  - ----- - 18 a  z  + 3 a  z  + 3 a  z  - ----- - 20 a z  + 4 a  z  - 
              2                                      a
             a
 
                       6                                7
     7  5       6   7 z       2  6    4  6    6  6   7 z         7    5  7
>   a  z  + 15 z  + ---- + 8 a  z  - a  z  - a  z  + ---- + 8 a z  - a  z  - 
                      2                               a
                     a
 
            8            9
       8   z     2  8   z       9
>   2 z  - -- - a  z  - -- - a z
            2           a
           a
In[10]:=
Kh[L][q, t]
Out[10]=   
    3      1        1        1        1        1       1       1       2
1 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  6    12  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      1      1      2     t     2      2    2  2    4  3    4  4    8  5
>   ----- + ---- + ---- + -- + q  t + t  + q  t  + q  t  + q  t  + q  t
     4  2    6      2      2
    q  t    q  t   q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n166
L11n165
L11n165
L11n167
L11n167