PD Presentation: |
X8192 X2,9,3,10 X10,3,11,4 X14,5,15,6 X11,19,12,18 X19,7,20,22 X15,21,16,20 X21,17,22,16 X17,13,18,12 X6718 X4,13,5,14 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 166]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 166]] |
Out[4]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[14, 5, 15, 6],
> X[11, 19, 12, 18], X[19, 7, 20, 22], X[15, 21, 16, 20], X[21, 17, 22, 16],
> X[17, 13, 18, 12], X[6, 7, 1, 8], X[4, 13, 5, 14]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -11, 4, -10},
> {10, -1, 2, -3, -5, 9, 11, -4, -7, 8, -9, 5, -6, 7, -8, 6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(13/2) -(11/2) 2 2 2 -(3/2) 1
-q + q - ---- + ---- - ---- + q - ------- - Sqrt[q] +
9/2 7/2 5/2 Sqrt[q]
q q q
3/2 5/2 7/2
> q - q + q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -20 2 2 -12 2 -6 -2 6 8 10
2 + q + --- + --- + q + --- + q + q - q - q - q
16 14 10
q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 166]][a, z] |
Out[8]= | 5 3
1 2 a a 6 z 3 5 5 z 3 3 3
--- - --- + -- + --- - 12 a z + a z + 2 a z + ---- - 15 a z + a z +
a z z z a a
5
5 3 z 5 7
> a z + -- - 7 a z - a z
a |
In[9]:= | Kauffman[Link[11, NonAlternating, 166]][a, z] |
Out[9]= | 5
2 2 4 1 2 a a 6 z 5 7 2
-5 - -- - 3 a + a + --- + --- - -- - --- - 13 a z + 4 a z - 3 a z + 25 z +
2 a z z z a
a
2 3
11 z 2 2 4 2 6 2 13 z 3 5 3 7 3
> ----- + 13 a z - 2 a z - a z + ----- + 22 a z - 5 a z + 4 a z -
2 a
a
4 5
4 15 z 2 4 4 4 6 4 15 z 5 5 5
> 33 z - ----- - 18 a z + 3 a z + 3 a z - ----- - 20 a z + 4 a z -
2 a
a
6 7
7 5 6 7 z 2 6 4 6 6 6 7 z 7 5 7
> a z + 15 z + ---- + 8 a z - a z - a z + ---- + 8 a z - a z -
2 a
a
8 9
8 z 2 8 z 9
> 2 z - -- - a z - -- - a z
2 a
a |
In[10]:= | Kh[L][q, t] |
Out[10]= | 3 1 1 1 1 1 1 1 2
1 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- +
2 14 6 12 6 12 5 10 4 8 4 8 3 6 3 6 2
q q t q t q t q t q t q t q t q t
1 1 2 t 2 2 2 2 4 3 4 4 8 5
> ----- + ---- + ---- + -- + q t + t + q t + q t + q t + q t
4 2 6 2 2
q t q t q t q |