PD Presentation: |
X8192 X16,7,17,8 X10,4,11,3 X2,15,3,16 X14,10,15,9 X18,11,19,12 X5,13,6,12 X6,21,1,22 X13,20,14,21 X22,17,7,18 X19,4,20,5 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 161]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 161]] |
Out[4]= | PD[X[8, 1, 9, 2], X[16, 7, 17, 8], X[10, 4, 11, 3], X[2, 15, 3, 16],
> X[14, 10, 15, 9], X[18, 11, 19, 12], X[5, 13, 6, 12], X[6, 21, 1, 22],
> X[13, 20, 14, 21], X[22, 17, 7, 18], X[19, 4, 20, 5]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, 3, 11, -7, -8},
> {2, -1, 5, -3, 6, 7, -9, -5, 4, -2, 10, -6, -11, 9, 8, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(17/2) 3 4 6 7 6 7 4 3
-q + ----- - ----- + ----- - ---- + ---- - ---- + ---- - ------- +
15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q
> Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -26 -24 -22 -20 3 -16 -14 3 4 2 3 2
1 + q - q - q - q - --- + q + q + --- + --- + -- + -- - q
18 12 10 8 6
q q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 161]][a, z] |
Out[8]= | 3 5 7
-2 a 3 a a 3 5 7 3 3 3 5 3
----- + ---- - -- + a z - 4 a z + a z + a z + a z - 3 a z - 2 a z +
z z z
7 3 3 5 5 5
> a z - a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 161]][a, z] |
Out[9]= | 3 5 7
4 6 8 2 a 3 a a 3 5 7 9
3 a + 3 a + a - ---- - ---- - -- + 2 a z + 6 a z + 5 a z + 2 a z + a z -
z z z
2 4 2 6 2 8 2 3 3 3 5 3 7 3
> z + 4 a z + 9 a z + 6 a z - 3 a z - 10 a z - 10 a z - 7 a z -
9 3 4 4 6 4 8 4 3 5 5 5 7 5
> 4 a z - 16 a z - 34 a z - 18 a z + 9 a z + 6 a z + a z +
9 5 2 6 4 6 6 6 8 6 3 7 5 7
> 4 a z - a z + 15 a z + 30 a z + 14 a z - 3 a z + 4 a z +
7 7 9 7 4 8 6 8 8 8 5 9 7 9
> 6 a z - a z - 4 a z - 7 a z - 3 a z - 2 a z - 2 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 1 2 1 2 2 4 2
2 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
2 18 8 16 7 14 7 14 6 12 6 12 5 10 5
q q t q t q t q t q t q t q t
3 4 3 3 4 4 1 3 2
> ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + q t
10 4 8 4 8 3 6 3 6 2 4 2 4 2
q t q t q t q t q t q t q t q t |