PD Presentation: |
X6172 X16,7,17,8 X4,17,1,18 X5,10,6,11 X8493 X11,22,12,5 X13,20,14,21 X19,14,20,15 X21,12,22,13 X9,18,10,19 X2,16,3,15 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 15]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 15]] |
Out[4]= | PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[5, 10, 6, 11],
> X[8, 4, 9, 3], X[11, 22, 12, 5], X[13, 20, 14, 21], X[19, 14, 20, 15],
> X[21, 12, 22, 13], X[9, 18, 10, 19], X[2, 16, 3, 15]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -11, 5, -3}, {-4, -1, 2, -5, -10, 4, -6, 9, -7, 8, 11, -2, 3, 10,
> -8, 7, -9, 6}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) -(17/2) -(15/2) -(13/2) -(11/2) -(9/2) -(5/2)
q - q + q - q + q - q - q -
1
> -------
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -30 -28 -26 -24 -18 -16 -14 -12 -10 2 2
1 - q - q - q - q + q + q + q + q + q + -- + -- +
8 6
q q
2 -2
> -- + q
4
q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 15]][a, z] |
Out[8]= | 3 5 7 9
a a a 2 a a 5 7 9 7 3
-(-) + -- - -- + ---- - -- - a z - a z + 3 a z - a z + a z
z z z z z |
In[9]:= | Kauffman[Link[11, NonAlternating, 15]][a, z] |
Out[9]= | 3 5 7 9
2 6 8 10 a a a 2 a a 3 5
-a - 4 a - 7 a - 3 a + - + -- + -- + ---- + -- - a z - a z - 5 a z -
z z z z z
7 9 6 2 8 2 10 2 5 3 7 3
> 8 a z - 3 a z + 15 a z + 26 a z + 11 a z + 5 a z + 16 a z +
9 3 6 4 8 4 10 4 5 5 7 5 9 5
> 11 a z - 16 a z - 31 a z - 15 a z - a z - 16 a z - 15 a z +
6 6 8 6 10 6 7 7 9 7 6 8 8 8
> 7 a z + 14 a z + 7 a z + 7 a z + 7 a z - a z - 2 a z -
10 8 7 9 9 9
> a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 2 1 1 1 1 1 1 1
1 + q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
2 20 9 16 8 16 7 14 6 12 6 14 5 12 5
q q t q t q t q t q t q t q t
1 2 1 1 1 1 1 2 1
> ------ + ------ + ----- + ------ + ----- + ----- + ----- + ----- + ----- +
10 5 10 4 8 4 10 3 8 3 6 3 8 2 6 2 4 2
q t q t q t q t q t q t q t q t q t
1 1
> ---- + ----
4 2
q t q t |