© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n146
L11n146
L11n148
L11n148
L11n147
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n147

Visit L11n147's page at Knotilus!

Acknowledgement

L11n147 as Morse Link
DrawMorseLink

PD Presentation: X8192 X18,9,19,10 X6718 X22,19,7,20 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X20,13,21,14 X14,21,15,22 X17,2,18,3

Gauss Code: {{1, 11, -6, 7, -5, -3}, {3, -1, 2, 6, -8, 5, 9, -10, -7, 8, -11, -2, 4, -9, 10, -4}}

Jones Polynomial: q-19/2 - 2q-17/2 + 4q-15/2 - 5q-13/2 + 5q-11/2 - 6q-9/2 + 4q-7/2 - 4q-5/2 + 2q-3/2 - q-1/2

A2 (sl(3)) Invariant: - 2q-28 - q-26 - 2q-24 + q-20 + q-18 + 4q-16 + q-14 + 3q-12 + q-10 + q-8 + q-6 + q-2

HOMFLY-PT Polynomial: - a3z-1 - 4a3z - 4a3z3 - a3z5 + 3a5z + 7a5z3 + 5a5z5 + a5z7 + 2a7z-1 - 3a7z3 - a7z5 - a9z-1

Kauffman Polynomial: - a3z-1 + 5a3z - 8a3z3 + 5a3z5 - a3z7 + a4 + a4z2 - 10a4z4 + 9a4z6 - 2a4z8 + 5a5z - 16a5z3 + 10a5z5 + a5z7 - a5z9 - 3a6 + 8a6z2 - 17a6z4 + 16a6z6 - 4a6z8 + 2a7z-1 - 2a7z - 3a7z3 + 5a7z5 + a7z7 - a7z9 - 5a8 + 13a8z2 - 11a8z4 + 7a8z6 - 2a8z8 + a9z-1 - 2a9z + 3a9z3 - a9z7 - 2a10 + 5a10z2 - 4a10z4 - 2a11z3 - a12z2

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0         1
j = -2        1 
j = -4       31 
j = -6      22  
j = -8     42   
j = -10    23    
j = -12   33     
j = -14  12      
j = -16 13       
j = -18 1        
j = -201         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 147]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 147]]
Out[4]=   
PD[X[8, 1, 9, 2], X[18, 9, 19, 10], X[6, 7, 1, 8], X[22, 19, 7, 20], 
 
>   X[5, 13, 6, 12], X[3, 10, 4, 11], X[15, 5, 16, 4], X[11, 16, 12, 17], 
 
>   X[20, 13, 21, 14], X[14, 21, 15, 22], X[17, 2, 18, 3]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, 11, -6, 7, -5, -3}, 
 
>   {3, -1, 2, 6, -8, 5, 9, -10, -7, 8, -11, -2, 4, -9, 10, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(19/2)     2       4       5       5      6      4      4      2        1
q        - ----- + ----- - ----- + ----- - ---- + ---- - ---- + ---- - -------
            17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q       q       q      q      q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
-2     -26    2     -20    -18    4     -14    3     -10    -8    -6    -2
--- - q    - --- + q    + q    + --- + q    + --- + q    + q   + q   + q
 28           24                  16           12
q            q                   q            q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 147]][a, z]
Out[8]=   
   3       7    9
  a     2 a    a       3        5        3  3      5  3      7  3    3  5
-(--) + ---- - -- - 4 a  z + 3 a  z - 4 a  z  + 7 a  z  - 3 a  z  - a  z  + 
  z      z     z
 
       5  5    7  5    5  7
>   5 a  z  - a  z  + a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 147]][a, z]
Out[9]=   
                            3      7    9
 4      6      8      10   a    2 a    a       3        5        7        9
a  - 3 a  - 5 a  - 2 a   - -- + ---- + -- + 5 a  z + 5 a  z - 2 a  z - 2 a  z + 
                           z     z     z
 
     4  2      6  2       8  2      10  2    12  2      3  3       5  3
>   a  z  + 8 a  z  + 13 a  z  + 5 a   z  - a   z  - 8 a  z  - 16 a  z  - 
 
       7  3      9  3      11  3       4  4       6  4       8  4      10  4
>   3 a  z  + 3 a  z  - 2 a   z  - 10 a  z  - 17 a  z  - 11 a  z  - 4 a   z  + 
 
       3  5       5  5      7  5      4  6       6  6      8  6    3  7
>   5 a  z  + 10 a  z  + 5 a  z  + 9 a  z  + 16 a  z  + 7 a  z  - a  z  + 
 
     5  7    7  7    9  7      4  8      6  8      8  8    5  9    7  9
>   a  z  + a  z  - a  z  - 2 a  z  - 4 a  z  - 2 a  z  - a  z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
2    3      1        1        1        3        1        2        3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    20  7    18  6    16  6    16  5    14  5    14  4    12  4
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      3        2        3        4      2      2     t    t     2
>   ------ + ------ + ------ + ----- + ---- + ---- + -- + -- + t
     12  3    10  3    10  2    8  2    8      6      4    2
    q   t    q   t    q   t    q  t    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n147
L11n146
L11n146
L11n148
L11n148