PD Presentation: |
X8192 X18,9,19,10 X6718 X22,19,7,20 X5,13,6,12 X3,10,4,11 X15,5,16,4 X11,16,12,17 X20,13,21,14 X14,21,15,22 X17,2,18,3 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 147]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 147]] |
Out[4]= | PD[X[8, 1, 9, 2], X[18, 9, 19, 10], X[6, 7, 1, 8], X[22, 19, 7, 20],
> X[5, 13, 6, 12], X[3, 10, 4, 11], X[15, 5, 16, 4], X[11, 16, 12, 17],
> X[20, 13, 21, 14], X[14, 21, 15, 22], X[17, 2, 18, 3]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, 11, -6, 7, -5, -3},
> {3, -1, 2, 6, -8, 5, 9, -10, -7, 8, -11, -2, 4, -9, 10, -4}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(19/2) 2 4 5 5 6 4 4 2 1
q - ----- + ----- - ----- + ----- - ---- + ---- - ---- + ---- - -------
17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -2 -26 2 -20 -18 4 -14 3 -10 -8 -6 -2
--- - q - --- + q + q + --- + q + --- + q + q + q + q
28 24 16 12
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 147]][a, z] |
Out[8]= | 3 7 9
a 2 a a 3 5 3 3 5 3 7 3 3 5
-(--) + ---- - -- - 4 a z + 3 a z - 4 a z + 7 a z - 3 a z - a z +
z z z
5 5 7 5 5 7
> 5 a z - a z + a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 147]][a, z] |
Out[9]= | 3 7 9
4 6 8 10 a 2 a a 3 5 7 9
a - 3 a - 5 a - 2 a - -- + ---- + -- + 5 a z + 5 a z - 2 a z - 2 a z +
z z z
4 2 6 2 8 2 10 2 12 2 3 3 5 3
> a z + 8 a z + 13 a z + 5 a z - a z - 8 a z - 16 a z -
7 3 9 3 11 3 4 4 6 4 8 4 10 4
> 3 a z + 3 a z - 2 a z - 10 a z - 17 a z - 11 a z - 4 a z +
3 5 5 5 7 5 4 6 6 6 8 6 3 7
> 5 a z + 10 a z + 5 a z + 9 a z + 16 a z + 7 a z - a z +
5 7 7 7 9 7 4 8 6 8 8 8 5 9 7 9
> a z + a z - a z - 2 a z - 4 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 2 3 1 1 1 3 1 2 3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
6 4 20 7 18 6 16 6 16 5 14 5 14 4 12 4
q q q t q t q t q t q t q t q t
3 2 3 4 2 2 t t 2
> ------ + ------ + ------ + ----- + ---- + ---- + -- + -- + t
12 3 10 3 10 2 8 2 8 6 4 2
q t q t q t q t q t q t q q |