© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n143
L11n143
L11n145
L11n145
L11n144
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n144

Visit L11n144's page at Knotilus!

Acknowledgement

L11n144 as Morse Link
DrawMorseLink

PD Presentation: X8192 X11,19,12,18 X3,10,4,11 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X20,16,21,15 X22,14,7,13 X14,22,15,21 X19,4,20,5

Gauss Code: {{1, -4, -3, 11, 5, -6}, {6, -1, 7, 3, -2, -5, 9, -10, 8, -7, 4, 2, -11, -8, 10, -9}}

Jones Polynomial: - q-13/2 + 2q-11/2 - 4q-9/2 + 5q-7/2 - 7q-5/2 + 6q-3/2 - 6q-1/2 + 4q1/2 - 2q3/2 + q5/2

A2 (sl(3)) Invariant: q-20 + q-16 + 2q-14 + 3q-10 + 2q-8 + 2q-6 + 2q-4 - q-2 + 1 - 2q2 - q4 - q8

HOMFLY-PT Polynomial: a-1z-1 + 2a-1z + a-1z3 - 2az-1 - 4az - 3az3 - az5 - 3a3z - 3a3z3 - a3z5 + a5z-1 + 2a5z + a5z3

Kauffman Polynomial: - 2a-2 + 3a-2z2 - a-2z4 + a-1z-1 - 2a-1z + 4a-1z3 - 2a-1z5 - 5 + 17z2 - 15z4 + 5z6 - z8 + 2az-1 - 7az + 14az3 - 14az5 + 5az7 - az9 - 3a2 + 13a2z2 - 22a2z4 + 12a2z6 - 3a2z8 + 2a3z - 4a3z3 - a3z5 + 2a3z7 - a3z9 + a4 - 2a4z2 - 3a4z4 + 5a4z6 - 2a4z8 - a5z-1 + 6a5z - 11a5z3 + 10a5z5 - 3a5z7 - a6z2 + 5a6z4 - 2a6z6 - a7z + 3a7z3 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 6         1
j = 4        1 
j = 2       31 
j = 0      31  
j = -2     44   
j = -4    32    
j = -6   24     
j = -8  23      
j = -10  2       
j = -1212        
j = -141         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 144]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 144]]
Out[4]=   
PD[X[8, 1, 9, 2], X[11, 19, 12, 18], X[3, 10, 4, 11], X[2, 17, 3, 18], 
 
>   X[12, 5, 13, 6], X[6, 7, 1, 8], X[16, 10, 17, 9], X[20, 16, 21, 15], 
 
>   X[22, 14, 7, 13], X[14, 22, 15, 21], X[19, 4, 20, 5]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, -3, 11, 5, -6}, 
 
>   {6, -1, 7, 3, -2, -5, 9, -10, 8, -7, 4, 2, -11, -8, 10, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     2      4      5      7      6        6                     3/2
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 4 Sqrt[q] - 2 q    + 
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
 
     5/2
>   q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    -16    2     3    2    2    2     -2      2    4    8
1 + q    + q    + --- + --- + -- + -- + -- - q   - 2 q  - q  - q
                   14    10    8    6    4
                  q     q     q    q    q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 144]][a, z]
Out[8]=   
             5                                    3
 1    2 a   a    2 z              3        5     z         3      3  3
--- - --- + -- + --- - 4 a z - 3 a  z + 2 a  z + -- - 3 a z  - 3 a  z  + 
a z    z    z     a                              a
 
     5  3      5    3  5
>   a  z  - a z  - a  z
In[9]:=
Kauffman[Link[11, NonAlternating, 144]][a, z]
Out[9]=   
                                   5
     2       2    4    1    2 a   a    2 z              3        5      7
-5 - -- - 3 a  + a  + --- + --- - -- - --- - 7 a z + 2 a  z + 6 a  z - a  z + 
      2               a z    z    z     a
     a
 
               2                                   3
        2   3 z        2  2      4  2    6  2   4 z          3      3  3
>   17 z  + ---- + 13 a  z  - 2 a  z  - a  z  + ---- + 14 a z  - 4 a  z  - 
              2                                  a
             a
 
                                  4                                     5
        5  3      7  3       4   z        2  4      4  4      6  4   2 z
>   11 a  z  + 3 a  z  - 15 z  - -- - 22 a  z  - 3 a  z  + 5 a  z  - ---- - 
                                  2                                   a
                                 a
 
          5    3  5       5  5    7  5      6       2  6      4  6      6  6
>   14 a z  - a  z  + 10 a  z  - a  z  + 5 z  + 12 a  z  + 5 a  z  - 2 a  z  + 
 
         7      3  7      5  7    8      2  8      4  8      9    3  9
>   5 a z  + 2 a  z  - 3 a  z  - z  - 3 a  z  - 2 a  z  - a z  - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    4      1        1        2        2        2       3       2       4
3 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
     2    14  6    12  6    12  5    10  4    8  4    8  3    6  3    6  2
    q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      3      2      4            2      2  2    4  2    6  3
>   ----- + ---- + ---- + t + 3 q  t + q  t  + q  t  + q  t
     4  2    4      2
    q  t    q  t   q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n144
L11n143
L11n143
L11n145
L11n145