PD Presentation: |
X8192 X18,11,19,12 X3,10,4,11 X2,17,3,18 X12,5,13,6 X6718 X9,16,10,17 X15,20,16,21 X13,22,14,7 X21,14,22,15 X19,4,20,5 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, NonAlternating, 141]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, NonAlternating, 141]] |
Out[4]= | PD[X[8, 1, 9, 2], X[18, 11, 19, 12], X[3, 10, 4, 11], X[2, 17, 3, 18],
> X[12, 5, 13, 6], X[6, 7, 1, 8], X[9, 16, 10, 17], X[15, 20, 16, 21],
> X[13, 22, 14, 7], X[21, 14, 22, 15], X[19, 4, 20, 5]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, -3, 11, 5, -6},
> {6, -1, -7, 3, 2, -5, -9, 10, -8, 7, 4, -2, -11, 8, -10, 9}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(21/2) -(19/2) -(17/2) 2 -(13/2) 2 -(9/2) -(7/2)
q - q + q - ----- + q - ----- + q - q
15/2 11/2
q q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -42 -36 -32 2 3 2 2 -18 -16 -12
-q - q - q + --- + --- + --- + --- + q + q + q
26 24 22 20
q q q q |
In[8]:= | HOMFLYPT[Link[11, NonAlternating, 141]][a, z] |
Out[8]= | 7 11 13
a 2 a a 7 9 11 13 7 3 9 3
-(--) + ----- - --- - 5 a z - 5 a z + 8 a z - a z - 10 a z - 10 a z +
z z z
11 3 7 5 9 5 11 5 7 7 9 7
> 6 a z - 6 a z - 6 a z + a z - a z - a z |
In[9]:= | Kauffman[Link[11, NonAlternating, 141]][a, z] |
Out[9]= | 7 11 13
8 10 12 14 a 2 a a 7 9 11
a - 3 a - 5 a - 2 a - -- + ----- + --- + 5 a z - 3 a z - 10 a z -
z z z
13 8 2 10 2 12 2 14 2 7 3 9 3
> 2 a z - a z + 14 a z + 16 a z + a z - 10 a z + 9 a z +
11 3 13 3 8 4 10 4 12 4 7 5 9 5
> 20 a z + a z - 5 a z - 21 a z - 16 a z + 6 a z - 11 a z -
11 5 8 6 10 6 12 6 7 7 9 7 11 7
> 17 a z + 5 a z + 12 a z + 7 a z - a z + 6 a z + 7 a z -
8 8 10 8 12 8 9 9 11 9
> a z - 2 a z - a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -8 -6 1 2 1 2 1 1 2
q + q + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
22 7 18 6 16 6 18 5 16 5 16 4 14 4
q t q t q t q t q t q t q t
1 1 1 1 1 1
> ------ + ------ + ------ + ------ + ------ + ----
12 4 14 3 12 3 12 2 10 2 8
q t q t q t q t q t q t |