© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11n113
L11n113
L11n115
L11n115
L11n114
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11n114

Visit L11n114's page at Knotilus!

Acknowledgement

L11n114 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X18,8,19,7 X22,20,5,19 X20,9,21,10 X8,21,9,22 X11,17,12,16 X17,15,18,14 X15,11,16,10 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -6, 5, 9, -7, -2, 11, 8, -9, 7, -8, -3, 4, -5, 6, -4}}

Jones Polynomial: - q-5/2 + 2q-3/2 - 5q-1/2 + 7q1/2 - 9q3/2 + 9q5/2 - 9q7/2 + 7q9/2 - 5q11/2 + 2q13/2

A2 (sl(3)) Invariant: q-8 + q-6 + q-4 + 3q-2 + q2 - q4 - 2q6 + 2q8 - q10 + 4q12 + q14 + q16 + q18 - 2q20 - q24

HOMFLY-PT Polynomial: a-7z-1 + a-7z - 4a-5z-1 - 6a-5z - 4a-5z3 - a-5z5 + 6a-3z-1 + 12a-3z + 10a-3z3 + 5a-3z5 + a-3z7 - 5a-1z-1 - 10a-1z - 8a-1z3 - 2a-1z5 + 2az-1 + 3az + az3

Kauffman Polynomial: a-8 - 3a-8z2 - a-7z-1 + 4a-7z - 5a-7z3 - a-7z5 + 3a-6 - 9a-6z2 + 9a-6z4 - 5a-6z6 - 4a-5z-1 + 18a-5z - 31a-5z3 + 25a-5z5 - 8a-5z7 + 3a-4 - 8a-4z2 + 2a-4z4 + 10a-4z6 - 5a-4z8 - 6a-3z-1 + 31a-3z - 58a-3z3 + 47a-3z5 - 10a-3z7 - a-3z9 + a-2 - 16a-2z4 + 23a-2z6 - 7a-2z8 - 5a-1z-1 + 24a-1z - 41a-1z3 + 26a-1z5 - 3a-1z7 - a-1z9 + 1 + 2z2 - 9z4 + 8z6 - 2z8 - 2az-1 + 7az - 9az3 + 5az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 14         2
j = 12        3 
j = 10       42 
j = 8      53  
j = 6     44   
j = 4    55    
j = 2   46     
j = 0  13      
j = -2 14       
j = -4 1        
j = -61         


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, NonAlternating, 114]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, NonAlternating, 114]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[18, 8, 19, 7], X[22, 20, 5, 19], 
 
>   X[20, 9, 21, 10], X[8, 21, 9, 22], X[11, 17, 12, 16], X[17, 15, 18, 14], 
 
>   X[15, 11, 16, 10], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -6, 5, 9, -7, -2, 11, 8, -9, 7, -8, -3, 
 
>    4, -5, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    2        5                     3/2      5/2      7/2      9/2
-q       + ---- - ------- + 7 Sqrt[q] - 9 q    + 9 q    - 9 q    + 7 q    - 
            3/2   Sqrt[q]
           q
 
       11/2      13/2
>   5 q     + 2 q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -8    -6    -4   3     2    4      6      8    10      12    14    16    18
q   + q   + q   + -- + q  - q  - 2 q  + 2 q  - q   + 4 q   + q   + q   + q   - 
                   2
                  q
 
       20    24
>   2 q   - q
In[8]:=
HOMFLYPT[Link[11, NonAlternating, 114]][a, z]
Out[8]=   
                                                                     3
 1      4      6      5    2 a   z    6 z   12 z   10 z           4 z
---- - ---- + ---- - --- + --- + -- - --- + ---- - ---- + 3 a z - ---- + 
 7      5      3     a z    z     7    5      3     a               5
a  z   a  z   a  z               a    a      a                     a
 
        3      3           5      5      5    7
    10 z    8 z       3   z    5 z    2 z    z
>   ----- - ---- + a z  - -- + ---- - ---- + --
      3      a             5     3     a      3
     a                    a     a            a
In[9]:=
Kauffman[Link[11, NonAlternating, 114]][a, z]
Out[9]=   
     -8   3    3     -2    1      4      6      5    2 a   4 z   18 z   31 z
1 + a   + -- + -- + a   - ---- - ---- - ---- - --- - --- + --- + ---- + ---- + 
           6    4          7      5      3     a z    z     7      5      3
          a    a          a  z   a  z   a  z               a      a      a
 
                             2      2      2      3       3       3       3
    24 z              2   3 z    9 z    8 z    5 z    31 z    58 z    41 z
>   ---- + 7 a z + 2 z  - ---- - ---- - ---- - ---- - ----- - ----- - ----- - 
     a                      8      6      4      7      5       3       a
                           a      a      a      a      a       a
 
                       4      4       4    5       5       5       5
         3      4   9 z    2 z    16 z    z    25 z    47 z    26 z         5
>   9 a z  - 9 z  + ---- + ---- - ----- - -- + ----- + ----- + ----- + 5 a z  + 
                      6      4      2      7     5       3       a
                     a      a      a      a     a       a
 
              6       6       6      7       7      7                    8
       6   5 z    10 z    23 z    8 z    10 z    3 z       7      8   5 z
>   8 z  - ---- + ----- + ----- - ---- - ----- - ---- - a z  - 2 z  - ---- - 
             6      4       2       5      3      a                     4
            a      a       a       a      a                            a
 
       8    9    9
    7 z    z    z
>   ---- - -- - --
      2     3   a
     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                           2
   2      4     1       1       1      -2     4     3   4 q       4
6 q  + 5 q  + ----- + ----- + ----- + t   + ----- + - + ---- + 5 q  t + 
               6  4    4  3    2  3          2  2   t    t
              q  t    q  t    q  t          q  t
 
       6        6  2      8  2      8  3      10  3      10  4      12  4
>   4 q  t + 4 q  t  + 5 q  t  + 3 q  t  + 4 q   t  + 2 q   t  + 3 q   t  + 
 
       14  5
>   2 q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11n114
L11n113
L11n113
L11n115
L11n115