© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a82
L11a82
L11a84
L11a84
L11a83
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a83

Visit L11a83's page at Knotilus!

Acknowledgement

L11a83 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X16,8,17,7 X20,10,21,9 X22,18,5,17 X18,22,19,21 X8,20,9,19 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -7, 4, -9, 8, -2, 11, -8, 9, -3, 5, -6, 7, -4, 6, -5}}

Jones Polynomial: - q-1/2 + 2q1/2 - 6q3/2 + 9q5/2 - 14q7/2 + 16q9/2 - 17q11/2 + 15q13/2 - 11q15/2 + 8q17/2 - 4q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q2 + 4q4 - q6 + 4q8 + 3q10 - q12 + 3q14 - 2q16 + q18 - q20 - 3q22 + 2q24 - 3q26 + 2q30 - q32

HOMFLY-PT Polynomial: a-9z3 + a-7z-1 + 2a-7z - a-7z5 - 2a-5z-1 - 4a-5z - 4a-5z3 - 2a-5z5 - a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: - a-12z2 + 2a-12z4 - a-12z6 - 5a-11z3 + 10a-11z5 - 4a-11z7 - 8a-10z4 + 15a-10z6 - 6a-10z8 - 3a-9z3 + 6a-9z5 + 4a-9z7 - 4a-9z9 + 2a-8 - 6a-8z2 - 5a-8z4 + 19a-8z6 - 8a-8z8 - a-8z10 - a-7z-1 + 4a-7z - 10a-7z3 + 6a-7z5 + 6a-7z7 - 6a-7z9 + 5a-6 - 13a-6z2 + 7a-6z4 + 5a-6z6 - 5a-6z8 - a-6z10 - 2a-5z-1 + 7a-5z - 15a-5z3 + 14a-5z5 - 5a-5z7 - 2a-5z9 + 3a-4 - 6a-4z2 + 5a-4z4 - 3a-4z8 + 3a-3z5 - 3a-3z7 - a-2 + 3a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          3 
j = 18         51 
j = 16        63  
j = 14       95   
j = 12      86    
j = 10     89     
j = 8    68      
j = 6   38       
j = 4  36        
j = 2 15         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 83]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 83]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[16, 8, 17, 7], X[20, 10, 21, 9], 
 
>   X[22, 18, 5, 17], X[18, 22, 19, 21], X[8, 20, 9, 19], X[14, 12, 15, 11], 
 
>   X[10, 16, 11, 15], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -7, 4, -9, 8, -2, 11, -8, 9, -3, 5, -6, 
 
>    7, -4, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2       7/2       9/2       11/2
-(-------) + 2 Sqrt[q] - 6 q    + 9 q    - 14 q    + 16 q    - 17 q     + 
  Sqrt[q]
 
        13/2       15/2      17/2      19/2    21/2
>   15 q     - 11 q     + 8 q     - 4 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4    6      8      10    12      14      16    18    20      22
q   + q  + 4 q  - q  + 4 q  + 3 q   - q   + 3 q   - 2 q   + q   - q   - 3 q   + 
 
       24      26      30    32
>   2 q   - 3 q   + 2 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 83]][a, z]
Out[8]=   
                                       3      3    3    3    5      5    5
 1      2      1    2 z   4 z   2 z   z    4 z    z    z    z    2 z    z
---- - ---- + --- + --- - --- + --- + -- - ---- - -- + -- - -- - ---- - --
 7      5     a z    7     5     a     9     5     3   a     7     5     3
a  z   a  z         a     a           a     a     a         a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 83]][a, z]
Out[9]=   
                                                            2       2       2
2    5    3     -2    1      2      1    4 z   7 z   3 z   z     6 z    13 z
-- + -- + -- - a   - ---- - ---- + --- + --- + --- - --- - --- - ---- - ----- - 
 8    6    4          7      5     a z    7     5     a     12     8      6
a    a    a          a  z   a  z         a     a           a      a      a
 
       2      3      3       3       3      3      4      4      4      4
    6 z    5 z    3 z    10 z    15 z    3 z    2 z    8 z    5 z    7 z
>   ---- - ---- - ---- - ----- - ----- + ---- + ---- - ---- - ---- + ---- + 
      4     11      9      7       5      a      12     10      8      6
     a     a       a      a       a             a      a       a      a
 
       4      4       5      5      5       5      5    5    6        6
    5 z    3 z    10 z    6 z    6 z    14 z    3 z    z    z     15 z
>   ---- + ---- + ----- + ---- + ---- + ----- + ---- - -- - --- + ----- + 
      4      2      11      9      7      5       3    a     12     10
     a      a      a       a      a      a       a          a      a
 
        6      6      6      7      7      7      7      7      8      8
    19 z    5 z    2 z    4 z    4 z    6 z    5 z    3 z    6 z    8 z
>   ----- + ---- - ---- - ---- + ---- + ---- - ---- - ---- - ---- - ---- - 
      8       6      2     11      9      7      5      3     10      8
     a       a      a     a       a      a      a      a     a       a
 
       8      8      9      9      9    10    10
    5 z    3 z    4 z    6 z    2 z    z     z
>   ---- - ---- - ---- - ---- - ---- - --- - ---
      6      4      9      7      5     8     6
     a      a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
5 q  + 3 q  + ----- + - + -- + 6 q  t + 3 q  t + 8 q  t  + 6 q  t  + 8 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   8 q   t  + 9 q   t  + 8 q   t  + 6 q   t  + 9 q   t  + 5 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   6 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a83
L11a82
L11a82
L11a84
L11a84