© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a80
L11a80
L11a82
L11a82
L11a81
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a81

Visit L11a81's page at Knotilus!

Acknowledgement

L11a81 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X18,13,19,14 X10,17,11,18 X8,21,9,22 X16,7,17,8 X20,9,21,10 X22,15,5,16 X14,19,15,20 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, 6, -5, 7, -4, 11, -2, 3, -9, 8, -6, 4, -3, 9, -7, 5, -8}}

Jones Polynomial: q-27/2 - 3q-25/2 + 8q-23/2 - 14q-21/2 + 20q-19/2 - 24q-17/2 + 24q-15/2 - 22q-13/2 + 16q-11/2 - 11q-9/2 + 4q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-42 - q-40 + q-38 - 4q-36 - q-34 + 3q-32 - 4q-30 + 4q-28 + q-24 + 5q-22 - 2q-20 + 7q-18 - q-16 + 4q-12 - 3q-10 + q-8

HOMFLY-PT Polynomial: - a5z3 - a5z5 - 2a7z-1 - 9a7z - 11a7z3 - 4a7z5 + 2a9z-1 + 4a9z - a9z3 - 2a9z5 + a11z-1 + 4a11z + 3a11z3 - a13z-1 - a13z

Kauffman Polynomial: a5z3 - a5z5 + 3a6z4 - 4a6z6 - 2a7z-1 + 9a7z - 15a7z3 + 17a7z5 - 10a7z7 + 3a8 - 5a8z2 - 4a8z4 + 17a8z6 - 12a8z8 - 2a9z-1 + 7a9z - 15a9z3 + 17a9z5 + a9z7 - 8a9z9 + 7a10z2 - 31a10z4 + 45a10z6 - 19a10z8 - 2a10z10 + a11z-1 - 4a11z + 2a11z3 - 3a11z5 + 18a11z7 - 13a11z9 - 3a12 + 15a12z2 - 31a12z4 + 34a12z6 - 12a12z8 - 2a12z10 + a13z-1 - a13z - 4a13z3 + 5a13z5 + 4a13z7 - 5a13z9 - 4a14z4 + 9a14z6 - 5a14z8 + a15z - 5a15z3 + 7a15z5 - 3a15z7 + a16 - 3a16z2 + 3a16z4 - a16z6

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          41
j = -8         7  
j = -10        94  
j = -12       137   
j = -14      1210    
j = -16     1212     
j = -18    812      
j = -20   612       
j = -22  28        
j = -24 16         
j = -26 2          
j = -281           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 81]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 81]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[18, 13, 19, 14], X[10, 17, 11, 18], 
 
>   X[8, 21, 9, 22], X[16, 7, 17, 8], X[20, 9, 21, 10], X[22, 15, 5, 16], 
 
>   X[14, 19, 15, 20], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 6, -5, 7, -4, 11, -2, 3, -9, 8, -6, 4, -3, 
 
>    9, -7, 5, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(27/2)     3       8      14      20      24      24      22      16
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ----- - 
            25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q       q
 
     11     4      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    -40    -38    4     -34    3     4     4     -24    5     2     7
-q    - q    + q    - --- - q    + --- - --- + --- + q    + --- - --- + --- - 
                       36           32    30    28           22    20    18
                      q            q     q     q            q     q     q
 
     -16    4     3     -8
>   q    + --- - --- + q
            12    10
           q     q
In[8]:=
HOMFLYPT[Link[11, Alternating, 81]][a, z]
Out[8]=   
    7      9    11    13
-2 a    2 a    a     a        7        9        11      13      5  3
----- + ---- + --- - --- - 9 a  z + 4 a  z + 4 a   z - a   z - a  z  - 
  z      z      z     z
 
        7  3    9  3      11  3    5  5      7  5      9  5
>   11 a  z  - a  z  + 3 a   z  - a  z  - 4 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 81]][a, z]
Out[9]=   
                        7      9    11    13
   8      12    16   2 a    2 a    a     a        7        9        11
3 a  - 3 a   + a   - ---- - ---- + --- + --- + 9 a  z + 7 a  z - 4 a   z - 
                      z      z      z     z
 
     13      15        8  2      10  2       12  2      16  2    5  3
>   a   z + a   z - 5 a  z  + 7 a   z  + 15 a   z  - 3 a   z  + a  z  - 
 
        7  3       9  3      11  3      13  3      15  3      6  4      8  4
>   15 a  z  - 15 a  z  + 2 a   z  - 4 a   z  - 5 a   z  + 3 a  z  - 4 a  z  - 
 
        10  4       12  4      14  4      16  4    5  5       7  5       9  5
>   31 a   z  - 31 a   z  - 4 a   z  + 3 a   z  - a  z  + 17 a  z  + 17 a  z  - 
 
       11  5      13  5      15  5      6  6       8  6       10  6
>   3 a   z  + 5 a   z  + 7 a   z  - 4 a  z  + 17 a  z  + 45 a   z  + 
 
        12  6      14  6    16  6       7  7    9  7       11  7      13  7
>   34 a   z  + 9 a   z  - a   z  - 10 a  z  + a  z  + 18 a   z  + 4 a   z  - 
 
       15  7       8  8       10  8       12  8      14  8      9  9
>   3 a   z  - 12 a  z  - 19 a   z  - 12 a   z  - 5 a   z  - 8 a  z  - 
 
        11  9      13  9      10  10      12  10
>   13 a   z  - 5 a   z  - 2 a   z   - 2 a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         2         1        6        2        8        6
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             28  11    26  10    24  10    24  9    22  9    22  8    20  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      12       8        12       12       12       12       10       13
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     20  7    18  7    18  6    16  6    16  5    14  5    14  4    12  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        9        4        7      4
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a81
L11a80
L11a80
L11a82
L11a82