© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a53
L11a53
L11a55
L11a55
L11a54
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a54

Visit L11a54's page at Knotilus!

Acknowledgement

L11a54 as Morse Link
DrawMorseLink

PD Presentation: X6172 X20,7,21,8 X4,21,1,22 X14,6,15,5 X10,4,11,3 X16,12,17,11 X12,16,13,15 X22,14,5,13 X18,9,19,10 X2,18,3,17 X8,19,9,20

Gauss Code: {{1, -10, 5, -3}, {4, -1, 2, -11, 9, -5, 6, -7, 8, -4, 7, -6, 10, -9, 11, -2, 3, -8}}

Jones Polynomial: q-9/2 - 3q-7/2 + 6q-5/2 - 11q-3/2 + 14q-1/2 - 18q1/2 + 18q3/2 - 16q5/2 + 12q7/2 - 8q9/2 + 4q11/2 - q13/2

A2 (sl(3)) Invariant: - q-14 + q-12 - 2q-8 + 4q-6 + q-2 + 5 - q2 + 3q4 - 2q6 + 2q10 - 3q12 + 3q14 - 2q18 + q20

HOMFLY-PT Polynomial: - a-5z3 - a-3z + a-3z5 - a-1z-1 + a-1z + 3a-1z3 + 2a-1z5 + az-1 + az + az3 + az5 - a3z - a3z3

Kauffman Polynomial: a-7z3 - a-7z5 + 6a-6z4 - 4a-6z6 - 3a-5z3 + 12a-5z5 - 7a-5z7 + 4a-4z2 - 12a-4z4 + 16a-4z6 - 8a-4z8 - 2a-3z + 6a-3z3 - 11a-3z5 + 11a-3z7 - 6a-3z9 + 8a-2z2 - 29a-2z4 + 24a-2z6 - 6a-2z8 - 2a-2z10 - a-1z-1 - 2a-1z + 18a-1z3 - 37a-1z5 + 29a-1z7 - 10a-1z9 + 1 + 6z2 - 17z4 + 14z6 - 2z8 - 2z10 - az-1 + 2az + az3 - 4az5 + 8az7 - 4az9 - 3a2z4 + 9a2z6 - 4a2z8 + 2a3z - 7a3z3 + 9a3z5 - 3a3z7 - 2a4z2 + 3a4z4 - a4z6

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 14           1
j = 12          3 
j = 10         51 
j = 8        73  
j = 6       95   
j = 4      97    
j = 2     99     
j = 0    711      
j = -2   47       
j = -4  27        
j = -6 14         
j = -8 2          
j = -101           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 54]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 54]]
Out[4]=   
PD[X[6, 1, 7, 2], X[20, 7, 21, 8], X[4, 21, 1, 22], X[14, 6, 15, 5], 
 
>   X[10, 4, 11, 3], X[16, 12, 17, 11], X[12, 16, 13, 15], X[22, 14, 5, 13], 
 
>   X[18, 9, 19, 10], X[2, 18, 3, 17], X[8, 19, 9, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 5, -3}, {4, -1, 2, -11, 9, -5, 6, -7, 8, -4, 7, -6, 10, -9, 
 
>    11, -2, 3, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(9/2)    3      6      11      14                       3/2       5/2
q       - ---- + ---- - ---- + ------- - 18 Sqrt[q] + 18 q    - 16 q    + 
           7/2    5/2    3/2   Sqrt[q]
          q      q      q
 
        7/2      9/2      11/2    13/2
>   12 q    - 8 q    + 4 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -14    -12   2    4     -2    2      4      6      10      12      14
5 - q    + q    - -- + -- + q   - q  + 3 q  - 2 q  + 2 q   - 3 q   + 3 q   - 
                   8    6
                  q    q
 
       18    20
>   2 q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 54]][a, z]
Out[8]=   
                                    3      3                   5      5
   1     a   z    z          3     z    3 z       3    3  3   z    2 z       5
-(---) + - - -- + - + a z - a  z - -- + ---- + a z  - a  z  + -- + ---- + a z
  a z    z    3   a                 5    a                     3    a
             a                     a                          a
In[9]:=
Kauffman[Link[11, Alternating, 54]][a, z]
Out[9]=   
                                                     2      2              3
     1    a   2 z   2 z              3        2   4 z    8 z       4  2   z
1 - --- - - - --- - --- + 2 a z + 2 a  z + 6 z  + ---- + ---- - 2 a  z  + -- - 
    a z   z    3     a                              4      2               7
              a                                    a      a               a
 
       3      3       3                               4       4       4
    3 z    6 z    18 z       3      3  3       4   6 z    12 z    29 z
>   ---- + ---- + ----- + a z  - 7 a  z  - 17 z  + ---- - ----- - ----- - 
      5      3      a                                6      4       2
     a      a                                       a      a       a
 
                         5       5       5       5
       2  4      4  4   z    12 z    11 z    37 z         5      3  5       6
>   3 a  z  + 3 a  z  - -- + ----- - ----- - ----- - 4 a z  + 9 a  z  + 14 z  - 
                         7     5       3       a
                        a     a       a
 
       6       6       6                        7       7       7
    4 z    16 z    24 z       2  6    4  6   7 z    11 z    29 z         7
>   ---- + ----- + ----- + 9 a  z  - a  z  - ---- + ----- + ----- + 8 a z  - 
      6      4       2                         5      3       a
     a      a       a                         a      a
 
                        8      8                9       9
       3  7      8   8 z    6 z       2  8   6 z    10 z         9      10
>   3 a  z  - 2 z  - ---- - ---- - 4 a  z  - ---- - ----- - 4 a z  - 2 z   - 
                       4      2                3      a
                      a      a                a
 
       10
    2 z
>   -----
      2
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
        2     1        2       1       4       2       7       4     7    7
11 + 9 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + - + ---- + 
             10  5    8  4    6  4    6  3    4  3    4  2    2  2   t    2
            q   t    q  t    q  t    q  t    q  t    q  t    q  t        q  t
 
       2        4        4  2      6  2      6  3      8  3      8  4
>   9 q  t + 9 q  t + 7 q  t  + 9 q  t  + 5 q  t  + 7 q  t  + 3 q  t  + 
 
       10  4    10  5      12  5    14  6
>   5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a54
L11a53
L11a53
L11a55
L11a55