© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a517
L11a517
L11a519
L11a519
L11a518
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a518

Visit L11a518's page at Knotilus!

Acknowledgement

L11a518 as Morse Link
DrawMorseLink

PD Presentation: X8192 X14,4,15,3 X22,9,13,10 X20,11,21,12 X12,19,7,20 X10,21,11,22 X18,14,19,13 X16,6,17,5 X2738 X4,16,5,15 X6,18,1,17

Gauss Code: {{1, -9, 2, -10, 8, -11}, {9, -1, 3, -6, 4, -5}, {7, -2, 10, -8, 11, -7, 5, -4, 6, -3}}

Jones Polynomial: q-5 - q-4 + 4q-3 - 5q-2 + 8q-1 - 9 + 10q - 9q2 + 8q3 - 5q4 + 3q5 - q6

A2 (sl(3)) Invariant: q-16 + 2q-14 + 2q-12 + 4q-10 + 3q-8 + 3q-6 + 4q-4 + q-2 + 3 + q2 + 2q6 - q8 + 2q10 + q16 - q18

HOMFLY-PT Polynomial: - 2a-4z2 - a-4z4 + a-2 + 2a-2z2 + 3a-2z4 + a-2z6 + z-2 + 2 + 2z2 + 3z4 + z6 - 2a2z-2 - 6a2 - 7a2z2 - 2a2z4 + a4z-2 + 3a4 + a4z2

Kauffman Polynomial: a-7z3 - a-6z2 + 3a-6z4 - 3a-5z3 + 5a-5z5 + 4a-4z2 - 10a-4z4 + 7a-4z6 + 5a-3z3 - 13a-3z5 + 7a-3z7 - 2a-2 + 7a-2z2 - 5a-2z4 - 8a-2z6 + 5a-2z8 + 3a-1z3 - 4a-1z5 - 5a-1z7 + 3a-1z9 - z-2 + 3 - z2 + 8z4 - 11z6 + z8 + z10 + 2az-1 - 9az + 4az3 + 15az5 - 16az7 + 4az9 - 2a2z-2 + 11a2 - 20a2z2 + 17a2z4 - 3a2z6 - 3a2z8 + a2z10 + 2a3z-1 - 9a3z + 10a3z3 + a3z5 - 4a3z7 + a3z9 - a4z-2 + 7a4 - 17a4z2 + 17a4z4 - 7a4z6 + a4z8

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 13           1
j = 11          2 
j = 9         31 
j = 7        52  
j = 5       54   
j = 3      54    
j = 1     67     
j = -1    23      
j = -3   36       
j = -5  12        
j = -7  3         
j = -911          
j = -111           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 518]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 518]]
Out[4]=   
PD[X[8, 1, 9, 2], X[14, 4, 15, 3], X[22, 9, 13, 10], X[20, 11, 21, 12], 
 
>   X[12, 19, 7, 20], X[10, 21, 11, 22], X[18, 14, 19, 13], X[16, 6, 17, 5], 
 
>   X[2, 7, 3, 8], X[4, 16, 5, 15], X[6, 18, 1, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 8, -11}, {9, -1, 3, -6, 4, -5}, 
 
>   {7, -2, 10, -8, 11, -7, 5, -4, 6, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
      -5    -4   4    5    8             2      3      4      5    6
-9 + q   - q   + -- - -- + - + 10 q - 9 q  + 8 q  - 5 q  + 3 q  - q
                  3    2   q
                 q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    2     2     4    3    3    4     -2    2      6    8      10
3 + q    + --- + --- + --- + -- + -- + -- + q   + q  + 2 q  - q  + 2 q   + 
            14    12    10    8    6    4
           q     q     q     q    q    q
 
     16    18
>   q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 518]][a, z]
Out[8]=   
                                 2    4             2      2
     -2      2      4    -2   2 a    a       2   2 z    2 z       2  2
2 + a   - 6 a  + 3 a  + z   - ---- + -- + 2 z  - ---- + ---- - 7 a  z  + 
                                2     2            4      2
                               z     z            a      a
 
                    4      4                   6
     4  2      4   z    3 z       2  4    6   z
>   a  z  + 3 z  - -- + ---- - 2 a  z  + z  + --
                    4     2                    2
                   a     a                    a
In[9]:=
Kauffman[Link[11, Alternating, 518]][a, z]
Out[9]=   
                                 2    4            3
    2        2      4    -2   2 a    a    2 a   2 a               3      2
3 - -- + 11 a  + 7 a  - z   - ---- - -- + --- + ---- - 9 a z - 9 a  z - z  - 
     2                          2     2    z     z
    a                          z     z
 
     2      2      2                          3      3      3      3
    z    4 z    7 z        2  2       4  2   z    3 z    5 z    3 z         3
>   -- + ---- + ---- - 20 a  z  - 17 a  z  + -- - ---- + ---- + ---- + 4 a z  + 
     6     4      2                           7     5      3     a
    a     a      a                           a     a      a
 
                         4       4      4                            5
        3  3      4   3 z    10 z    5 z        2  4       4  4   5 z
>   10 a  z  + 8 z  + ---- - ----- - ---- + 17 a  z  + 17 a  z  + ---- - 
                        6      4       2                            5
                       a      a       a                            a
 
        5      5                                6      6
    13 z    4 z          5    3  5       6   7 z    8 z       2  6      4  6
>   ----- - ---- + 15 a z  + a  z  - 11 z  + ---- - ---- - 3 a  z  - 7 a  z  + 
      3      a                                 4      2
     a                                        a      a
 
       7      7                               8                        9
    7 z    5 z          7      3  7    8   5 z       2  8    4  8   3 z
>   ---- - ---- - 16 a z  - 4 a  z  + z  + ---- - 3 a  z  + a  z  + ---- + 
      3     a                                2                       a
     a                                      a
 
         9    3  9    10    2  10
>   4 a z  + a  z  + z   + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
         3     1        1       1       3       1       2       3       6
7 q + 5 q  + ------ + ----- + ----- + ----- + ----- + ----- + ----- + ----- + 
              11  6    9  6    9  5    7  4    5  4    5  3    3  3    3  2
             q   t    q  t    q  t    q  t    q  t    q  t    q  t    q  t
 
     2      3    6 q      3        5        5  2      7  2      7  3
>   ---- + --- + --- + 4 q  t + 5 q  t + 4 q  t  + 5 q  t  + 2 q  t  + 
       2   q t    t
    q t
 
       9  3    9  4      11  4    13  5
>   3 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a518
L11a517
L11a517
L11a519
L11a519