© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a500
L11a500
L11a502
L11a502
L11a501
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a501

Visit L11a501's page at Knotilus!

Acknowledgement

L11a501 as Morse Link
DrawMorseLink

PD Presentation: X8192 X14,5,15,6 X10,3,11,4 X4,13,5,14 X2738 X6,9,1,10 X18,12,19,11 X12,18,7,17 X20,16,21,15 X22,20,13,19 X16,22,17,21

Gauss Code: {{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 7, -8}, {4, -2, 9, -11, 8, -7, 10, -9, 11, -10}}

Jones Polynomial: q-6 - 3q-5 + 8q-4 - 11q-3 + 17q-2 - 18q-1 + 19 - 16q + 12q2 - 7q3 + 3q4 - q5

A2 (sl(3)) Invariant: q-18 - q-16 + 3q-14 + 5q-12 + 2q-10 + 10q-8 + 5q-6 + 4q-4 + 4q-2 - 3 + 2q2 - 4q4 + 2q8 - 3q10 + q12 - q16

HOMFLY-PT Polynomial: - a-4 - a-4z2 - a-2z-2 + a-2 + 3a-2z2 + 2a-2z4 + 4z-2 + 6 + 2z2 - z4 - z6 - 5a2z-2 - 9a2 - 7a2z2 - 3a2z4 - a2z6 + 2a4z-2 + 3a4 + 2a4z2 + a4z4

Kauffman Polynomial: a-5z - 2a-5z3 + a-5z5 - a-4 + 3a-4z2 - 5a-4z4 + 3a-4z6 + a-3z-1 - 2a-3z + 4a-3z3 - 7a-3z5 + 5a-3z7 - a-2z-2 + 5a-2z2 - 6a-2z4 - 2a-2z6 + 5a-2z8 + 5a-1z-1 - 19a-1z + 31a-1z3 - 27a-1z5 + 8a-1z7 + 3a-1z9 - 4z-2 + 13 - 16z2 + 21z4 - 24z6 + 11z8 + z10 + 9az-1 - 35az + 50az3 - 29az5 - 2az7 + 7az9 - 5a2z-2 + 22a2 - 43a2z2 + 51a2z4 - 39a2z6 + 12a2z8 + a2z10 + 5a3z-1 - 19a3z + 28a3z3 - 17a3z5 - 2a3z7 + 4a3z9 - 2a4z-2 + 11a4 - 23a4z2 + 26a4z4 - 19a4z6 + 6a4z8 + 3a5z3 - 7a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          2 
j = 7         51 
j = 5        72  
j = 3       95   
j = 1      107    
j = -1     1011     
j = -3    78      
j = -5   511       
j = -7  36        
j = -9  5         
j = -1113          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 501]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 501]]
Out[4]=   
PD[X[8, 1, 9, 2], X[14, 5, 15, 6], X[10, 3, 11, 4], X[4, 13, 5, 14], 
 
>   X[2, 7, 3, 8], X[6, 9, 1, 10], X[18, 12, 19, 11], X[12, 18, 7, 17], 
 
>   X[20, 16, 21, 15], X[22, 20, 13, 19], X[16, 22, 17, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 7, -8}, 
 
>   {4, -2, 9, -11, 8, -7, 10, -9, 11, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
      -6   3    8    11   17   18              2      3      4    5
19 + q   - -- + -- - -- + -- - -- - 16 q + 12 q  - 7 q  + 3 q  - q
            5    4    3    2   q
           q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -18    -16    3     5     2    10   5    4    4       2      4      8
-3 + q    - q    + --- + --- + --- + -- + -- + -- + -- + 2 q  - 4 q  + 2 q  - 
                    14    12    10    8    6    4    2
                   q     q     q     q    q    q    q
 
       10    12    16
>   3 q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 501]][a, z]
Out[8]=   
                                              2      4           2      2
     -4    -2      2      4   4      1     5 a    2 a       2   z    3 z
6 - a   + a   - 9 a  + 3 a  + -- - ----- - ---- + ---- + 2 z  - -- + ---- - 
                               2    2  2     2      2            4     2
                              z    a  z     z      z            a     a
 
                                4
       2  2      4  2    4   2 z       2  4    4  4    6    2  6
>   7 a  z  + 2 a  z  - z  + ---- - 3 a  z  + a  z  - z  - a  z
                               2
                              a
In[9]:=
Kauffman[Link[11, Alternating, 501]][a, z]
Out[9]=   
                                           2      4                         3
      -4       2       4   4      1     5 a    2 a     1      5    9 a   5 a
13 - a   + 22 a  + 11 a  - -- - ----- - ---- - ---- + ---- + --- + --- + ---- + 
                            2    2  2     2      2     3     a z    z     z
                           z    a  z     z      z     a  z
 
                                                    2      2
    z    2 z   19 z                3         2   3 z    5 z        2  2
>   -- - --- - ---- - 35 a z - 19 a  z - 16 z  + ---- + ---- - 43 a  z  - 
     5    3     a                                  4      2
    a    a                                        a      a
 
                            3      3       3
        4  2      6  2   2 z    4 z    31 z          3       3  3      5  3
>   23 a  z  + 2 a  z  - ---- + ---- + ----- + 50 a z  + 28 a  z  + 3 a  z  + 
                           5      3      a
                          a      a
 
               4      4                                    5      5       5
        4   5 z    6 z        2  4       4  4      6  4   z    7 z    27 z
>   21 z  - ---- - ---- + 51 a  z  + 26 a  z  - 3 a  z  + -- - ---- - ----- - 
              4      2                                     5     3      a
             a      a                                     a     a
 
                                              6      6
          5       3  5      5  5       6   3 z    2 z        2  6       4  6
>   29 a z  - 17 a  z  - 7 a  z  - 24 z  + ---- - ---- - 39 a  z  - 19 a  z  + 
                                             4      2
                                            a      a
 
               7      7                                           8
     6  6   5 z    8 z         7      3  7      5  7       8   5 z
>   a  z  + ---- + ---- - 2 a z  - 2 a  z  + 3 a  z  + 11 z  + ---- + 
              3     a                                            2
             a                                                  a
 
                            9
        2  8      4  8   3 z         9      3  9    10    2  10
>   12 a  z  + 6 a  z  + ---- + 7 a z  + 4 a  z  + z   + a  z
                          a
In[10]:=
Kh[L][q, t]
Out[10]=   
11            1        1        3        5       3       6       5      11
-- + 10 q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  6    11  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t
 
      7      8     10               3        3  2      5  2      5  3
>   ----- + ---- + --- + 7 q t + 9 q  t + 5 q  t  + 7 q  t  + 2 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   5 q  t  + q  t  + 2 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a501
L11a500
L11a500
L11a502
L11a502