© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a4
L11a4
L11a6
L11a6
L11a5
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a5

Visit L11a5's page at Knotilus!

Acknowledgement

L11a5 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X10,6,11,5 X8493 X22,12,5,11 X20,14,21,13 X14,20,15,19 X12,22,13,21 X18,10,19,9 X2,16,3,15

Gauss Code: {{1, -11, 5, -3}, {4, -1, 2, -5, 10, -4, 6, -9, 7, -8, 11, -2, 3, -10, 8, -7, 9, -6}}

Jones Polynomial: q-5/2 - 4q-3/2 + 6q-1/2 - 10q1/2 + 12q3/2 - 14q5/2 + 13q7/2 - 11q9/2 + 8q11/2 - 5q13/2 + 3q15/2 - q17/2

A2 (sl(3)) Invariant: - q-8 + 2q-6 + q-4 + 5 + q4 + q6 - q8 + 2q10 - q12 + q14 + q16 - 3q18 + q20 - q24 + q26

HOMFLY-PT Polynomial: - a-7z - a-7z3 + 2a-5z + 2a-5z3 + a-5z5 - a-3z + a-3z5 - a-1z-1 + a-1z3 + a-1z5 + az-1 - az3

Kauffman Polynomial: - 3a-9z3 + 4a-9z5 - a-9z7 + 6a-8z2 - 15a-8z4 + 13a-8z6 - 3a-8z8 - 2a-7z + 11a-7z3 - 21a-7z5 + 17a-7z7 - 4a-7z9 + 11a-6z2 - 27a-6z4 + 16a-6z6 + 2a-6z8 - 2a-6z10 - 4a-5z + 22a-5z3 - 46a-5z5 + 36a-5z7 - 9a-5z9 + 6a-4z2 - 23a-4z4 + 18a-4z6 - a-4z8 - 2a-4z10 - 2a-3z + 8a-3z3 - 13a-3z5 + 12a-3z7 - 5a-3z9 + a-2z2 - 4a-2z4 + 9a-2z6 - 6a-2z8 - a-1z-1 + 4a-1z3 + 4a-1z5 - 6a-1z7 + 1 + 6z4 - 6z6 - az-1 + 4az3 - 4az5 - a2z4

Khovanov Homology:
trqj r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8
j = 18           1
j = 16          2 
j = 14         31 
j = 12        52  
j = 10       63   
j = 8      75    
j = 6     76     
j = 4    57      
j = 2   57       
j = 0  37        
j = -2 13         
j = -4 3          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 5]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 5]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[10, 6, 11, 5], 
 
>   X[8, 4, 9, 3], X[22, 12, 5, 11], X[20, 14, 21, 13], X[14, 20, 15, 19], 
 
>   X[12, 22, 13, 21], X[18, 10, 19, 9], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {4, -1, 2, -5, 10, -4, 6, -9, 7, -8, 11, -2, 3, -10, 
 
>    8, -7, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(5/2)    4        6                       3/2       5/2       7/2       9/2
q       - ---- + ------- - 10 Sqrt[q] + 12 q    - 14 q    + 13 q    - 11 q    + 
           3/2   Sqrt[q]
          q
 
       11/2      13/2      15/2    17/2
>   8 q     - 5 q     + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -8   2     -4    4    6    8      10    12    14    16      18    20
5 - q   + -- + q   + q  + q  - q  + 2 q   - q   + q   + q   - 3 q   + q   - 
           6
          q
 
     24    26
>   q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 5]][a, z]
Out[8]=   
                              3      3    3           5    5    5
   1     a   z    2 z   z    z    2 z    z       3   z    z    z
-(---) + - - -- + --- - -- - -- + ---- + -- - a z  + -- + -- + --
  a z    z    7    5     3    7     5    a            5    3   a
             a    a     a    a     a                 a    a
In[9]:=
Kauffman[Link[11, Alternating, 5]][a, z]
Out[9]=   
                                   2       2      2    2      3       3
     1    a   2 z   4 z   2 z   6 z    11 z    6 z    z    3 z    11 z
1 - --- - - - --- - --- - --- + ---- + ----- + ---- + -- - ---- + ----- + 
    a z   z    7     5     3      8      6       4     2     9      7
              a     a     a      a      a       a     a     a      a
 
        3      3      3                       4       4       4      4
    22 z    8 z    4 z         3      4   15 z    27 z    23 z    4 z
>   ----- + ---- + ---- + 4 a z  + 6 z  - ----- - ----- - ----- - ---- - 
      5       3     a                       8       6       4       2
     a       a                             a       a       a       a
 
               5       5       5       5      5                       6
     2  4   4 z    21 z    46 z    13 z    4 z         5      6   13 z
>   a  z  + ---- - ----- - ----- - ----- + ---- - 4 a z  - 6 z  + ----- + 
              9      7       5       3      a                       8
             a      a       a       a                              a
 
        6       6      6    7       7       7       7      7      8      8
    16 z    18 z    9 z    z    17 z    36 z    12 z    6 z    3 z    2 z
>   ----- + ----- + ---- - -- + ----- + ----- + ----- - ---- - ---- + ---- - 
      6       4       2     9     7       5       3      a       8      6
     a       a       a     a     a       a       a              a      a
 
     8      8      9      9      9      10      10
    z    6 z    4 z    9 z    5 z    2 z     2 z
>   -- - ---- - ---- - ---- - ---- - ----- - -----
     4     2      7      5      3      6       4
    a     a      a      a      a      a       a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       3       1     3    3        2        4        4  2
7 + 5 q  + ----- + ----- + ----- + - + ---- + 7 q  t + 5 q  t + 7 q  t  + 
            6  3    4  2    2  2   t    2
           q  t    q  t    q  t        q  t
 
       6  2      6  3      8  3      8  4      10  4      10  5      12  5
>   7 q  t  + 6 q  t  + 7 q  t  + 5 q  t  + 6 q   t  + 3 q   t  + 5 q   t  + 
 
       12  6      14  6    14  7      16  7    18  8
>   2 q   t  + 3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a5
L11a4
L11a4
L11a6
L11a6