© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a477
L11a477
L11a479
L11a479
L11a478
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a478

Visit L11a478's page at Knotilus!

Acknowledgement

L11a478 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X16,8,5,7 X18,9,19,10 X22,15,17,16 X14,19,15,20 X20,13,21,14 X12,21,13,22 X8,17,9,18 X2536 X4,12,1,11

Gauss Code: {{1, -10, 2, -11}, {9, -4, 6, -7, 8, -5}, {10, -1, 3, -9, 4, -2, 11, -8, 7, -6, 5, -3}}

Jones Polynomial: q-9 - 2q-8 + 6q-7 - 10q-6 + 15q-5 - 17q-4 + 19q-3 - 16q-2 + 13q-1 - 8 + 4q - q2

A2 (sl(3)) Invariant: q-28 + q-26 + q-24 + 5q-22 + q-20 + 2q-18 + 6q-16 + 5q-12 + q-10 + q-8 + 3q-6 - 3q-4 + 4q-2 - 1 - q2 + 2q4 - q6

HOMFLY-PT Polynomial: - z2 - z4 + a2 + 2a2z2 + 2a2z4 + a2z6 + a4z-2 + 3a4 + 3a4z2 + 2a4z4 + a4z6 - 2a6z-2 - 6a6 - 5a6z2 - 2a6z4 + a8z-2 + 2a8 + a8z2

Kauffman Polynomial: - a-1z3 + a-1z5 + 2z2 - 6z4 + 4z6 - az + 4az3 - 11az5 + 7az7 - 8a2z6 + 7a2z8 - 2a3z + 15a3z3 - 19a3z5 + 4a3z7 + 4a3z9 - a4z-2 + 7a4 - 21a4z2 + 36a4z4 - 32a4z6 + 12a4z8 + a4z10 + 2a5z-1 - 9a5z + 12a5z3 - 2a5z5 - 9a5z7 + 7a5z9 - 2a6z-2 + 11a6 - 27a6z2 + 37a6z4 - 27a6z6 + 8a6z8 + a6z10 + 2a7z-1 - 7a7z + 4a7z3 - 4a7z7 + 3a7z9 - a8z-2 + 3a8 - 3a8z2 + 3a8z4 - 6a8z6 + 3a8z8 + a9z + 2a9z3 - 5a9z5 + 2a9z7 - 2a10 + 5a10z2 - 4a10z4 + a10z6

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 5           1
j = 3          3 
j = 1         51 
j = -1        83  
j = -3       107   
j = -5      96    
j = -7     810     
j = -9    79      
j = -11   38       
j = -13  37        
j = -15 15         
j = -17 1          
j = -191           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 478]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 478]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[16, 8, 5, 7], X[18, 9, 19, 10], 
 
>   X[22, 15, 17, 16], X[14, 19, 15, 20], X[20, 13, 21, 14], X[12, 21, 13, 22], 
 
>   X[8, 17, 9, 18], X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {9, -4, 6, -7, 8, -5}, 
 
>   {10, -1, 3, -9, 4, -2, 11, -8, 7, -6, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
      -9   2    6    10   15   17   19   16   13          2
-8 + q   - -- + -- - -- + -- - -- + -- - -- + -- + 4 q - q
            8    7    6    5    4    3    2   q
           q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -28    -26    -24    5     -20    2     6     5     -10    -8   3    3
-1 + q    + q    + q    + --- + q    + --- + --- + --- + q    + q   + -- - -- + 
                           22           18    16    12                 6    4
                          q            q     q     q                  q    q
 
    4     2      4    6
>   -- - q  + 2 q  - q
     2
    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 478]][a, z]
Out[8]=   
                           4      6    8
 2      4      6      8   a    2 a    a     2      2  2      4  2      6  2
a  + 3 a  - 6 a  + 2 a  + -- - ---- + -- - z  + 2 a  z  + 3 a  z  - 5 a  z  + 
                           2     2     2
                          z     z     z
 
     8  2    4      2  4      4  4      6  4    2  6    4  6
>   a  z  - z  + 2 a  z  + 2 a  z  - 2 a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 478]][a, z]
Out[9]=   
                               4      6    8      5      7
   4       6      8      10   a    2 a    a    2 a    2 a             3
7 a  + 11 a  + 3 a  - 2 a   - -- - ---- - -- + ---- + ---- - a z - 2 a  z - 
                               2     2     2    z      z
                              z     z     z
 
       5        7      9        2       4  2       6  2      8  2      10  2
>   9 a  z - 7 a  z + a  z + 2 z  - 21 a  z  - 27 a  z  - 3 a  z  + 5 a   z  - 
 
     3
    z         3       3  3       5  3      7  3      9  3      4       4  4
>   -- + 4 a z  + 15 a  z  + 12 a  z  + 4 a  z  + 2 a  z  - 6 z  + 36 a  z  + 
    a
 
                                     5
        6  4      8  4      10  4   z          5       3  5      5  5
>   37 a  z  + 3 a  z  - 4 a   z  + -- - 11 a z  - 19 a  z  - 2 a  z  - 
                                    a
 
       9  5      6      2  6       4  6       6  6      8  6    10  6
>   5 a  z  + 4 z  - 8 a  z  - 32 a  z  - 27 a  z  - 6 a  z  + a   z  + 
 
         7      3  7      5  7      7  7      9  7      2  8       4  8
>   7 a z  + 4 a  z  - 9 a  z  - 4 a  z  + 2 a  z  + 7 a  z  + 12 a  z  + 
 
       6  8      8  8      3  9      5  9      7  9    4  10    6  10
>   8 a  z  + 3 a  z  + 4 a  z  + 7 a  z  + 3 a  z  + a  z   + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
7    8     1        1        1        5        3        7        3
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    19  8    17  7    15  7    15  6    13  6    13  5    11  5
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        7       9       8      10       9      6      10    3 t
>   ------ + ----- + ----- + ----- + ----- + ----- + ---- + ---- + --- + 
     11  4    9  4    9  3    7  3    7  2    5  2    5      3      q
    q   t    q  t    q  t    q  t    q  t    q  t    q  t   q  t
 
               2      3  2    5  3
>   5 q t + q t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a478
L11a477
L11a477
L11a479
L11a479