© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a468
L11a468
L11a470
L11a470
L11a469
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a469

Visit L11a469's page at Knotilus!

Acknowledgement

L11a469 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X18,11,19,12 X16,8,17,7 X8,16,9,15 X22,17,15,18 X12,21,13,22 X20,13,21,14 X14,19,5,20 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {5, -4, 6, -3, 9, -8, 7, -6}, {10, -1, 4, -5, 11, -2, 3, -7, 8, -9}}

Jones Polynomial: - q-10 + 3q-9 - 6q-8 + 11q-7 - 13q-6 + 17q-5 - 16q-4 + 15q-3 - 11q-2 + 7q-1 - 3 + q

A2 (sl(3)) Invariant: - q-32 - q-30 + 2q-28 - q-26 + q-24 + 7q-22 + 2q-20 + 6q-18 + 5q-16 + q-14 + 3q-12 - 2q-10 + 3q-8 + q-6 - 2q-4 + 4q-2 - 1 - q2 + q4

HOMFLY-PT Polynomial: z2 + 2a2 + 2a2z2 - a2z4 + a4z-2 - a4 - 3a4z2 - 3a4z4 - 2a6z-2 - 2a6 - a6z2 - 2a6z4 + a8z-2 + 2a8 + 3a8z2 - a10

Kauffman Polynomial: - z2 + z4 - 2az3 + 3az5 - 2a2 + 6a2z2 - 7a2z4 + 6a2z6 - a3z + 8a3z3 - 11a3z5 + 8a3z7 - a4z-2 + 2a4 + 4a4z2 - 4a4z4 - 6a4z6 + 7a4z8 + 2a5z-1 - 10a5z + 22a5z3 - 24a5z5 + 4a5z7 + 4a5z9 - 2a6z-2 + 12a6 - 28a6z2 + 39a6z4 - 38a6z6 + 12a6z8 + a6z10 + 2a7z-1 - 14a7z + 25a7z3 - 13a7z5 - 11a7z7 + 7a7z9 - a8z-2 + 12a8 - 34a8z2 + 51a8z4 - 38a8z6 + 8a8z8 + a8z10 - 7a9z + 18a9z3 - 7a9z5 - 6a9z7 + 3a9z9 + 3a10 - 9a10z2 + 16a10z4 - 12a10z6 + 3a10z8 - 2a11z + 5a11z3 - 4a11z5 + a11z7

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3           1
j = 1          2 
j = -1         51 
j = -3        73  
j = -5       84   
j = -7      98    
j = -9     87     
j = -11    610      
j = -13   57       
j = -15  27        
j = -17 14         
j = -19 2          
j = -211           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 469]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 469]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[18, 11, 19, 12], X[16, 8, 17, 7], 
 
>   X[8, 16, 9, 15], X[22, 17, 15, 18], X[12, 21, 13, 22], X[20, 13, 21, 14], 
 
>   X[14, 19, 5, 20], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {5, -4, 6, -3, 9, -8, 7, -6}, 
 
>   {10, -1, 4, -5, 11, -2, 3, -7, 8, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
      -10   3    6    11   13   17   16   15   11   7
-3 - q    + -- - -- + -- - -- + -- - -- + -- - -- + - + q
             9    8    7    6    5    4    3    2   q
            q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -32    -30    2     -26    -24    7     2     6     5     -14    3
-1 - q    - q    + --- - q    + q    + --- + --- + --- + --- + q    + --- - 
                    28                  22    20    18    16           12
                   q                   q     q     q     q            q
 
     2    3     -6   2    4     2    4
>   --- + -- + q   - -- + -- - q  + q
     10    8          4    2
    q     q          q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 469]][a, z]
Out[8]=   
                                 4      6    8
   2    4      6      8    10   a    2 a    a     2      2  2      4  2
2 a  - a  - 2 a  + 2 a  - a   + -- - ---- + -- + z  + 2 a  z  - 3 a  z  - 
                                 2     2     2
                                z     z     z
 
     6  2      8  2    2  4      4  4      6  4
>   a  z  + 3 a  z  - a  z  - 3 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 469]][a, z]
Out[9]=   
                                        4      6    8      5      7
    2      4       6       8      10   a    2 a    a    2 a    2 a     3
-2 a  + 2 a  + 12 a  + 12 a  + 3 a   - -- - ---- - -- + ---- + ---- - a  z - 
                                        2     2     2    z      z
                                       z     z     z
 
        5         7        9        11      2      2  2      4  2       6  2
>   10 a  z - 14 a  z - 7 a  z - 2 a   z - z  + 6 a  z  + 4 a  z  - 28 a  z  - 
 
        8  2      10  2        3      3  3       5  3       7  3       9  3
>   34 a  z  - 9 a   z  - 2 a z  + 8 a  z  + 22 a  z  + 25 a  z  + 18 a  z  + 
 
       11  3    4      2  4      4  4       6  4       8  4       10  4
>   5 a   z  + z  - 7 a  z  - 4 a  z  + 39 a  z  + 51 a  z  + 16 a   z  + 
 
         5       3  5       5  5       7  5      9  5      11  5      2  6
>   3 a z  - 11 a  z  - 24 a  z  - 13 a  z  - 7 a  z  - 4 a   z  + 6 a  z  - 
 
       4  6       6  6       8  6       10  6      3  7      5  7       7  7
>   6 a  z  - 38 a  z  - 38 a  z  - 12 a   z  + 8 a  z  + 4 a  z  - 11 a  z  - 
 
       9  7    11  7      4  8       6  8      8  8      10  8      5  9
>   6 a  z  + a   z  + 7 a  z  + 12 a  z  + 8 a  z  + 3 a   z  + 4 a  z  + 
 
       7  9      9  9    6  10    8  10
>   7 a  z  + 3 a  z  + a  z   + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5     1        2        1        4        2        7        5
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      7        6        10       8       7       9       8       8      4
>   ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     13  5    11  5    11  4    9  4    9  3    7  3    7  2    5  2    5
    q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     7     t            3  2
>   ---- + - + 2 q t + q  t
     3     q
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a469
L11a468
L11a468
L11a470
L11a470