© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a436
L11a436
L11a438
L11a438
L11a437
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a437

Visit L11a437's page at Knotilus!

Acknowledgement

L11a437 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X18,11,19,12 X14,8,15,7 X8,14,9,13 X22,15,13,16 X20,17,21,18 X16,21,17,22 X12,19,5,20 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -9}, {5, -4, 6, -8, 7, -3, 9, -7, 8, -6}}

Jones Polynomial: - q-10 + 3q-9 - 6q-8 + 9q-7 - 10q-6 + 13q-5 - 12q-4 + 11q-3 - 7q-2 + 5q-1 - 2 + q

A2 (sl(3)) Invariant: - q-32 - q-30 + 2q-28 - q-26 + 3q-22 - q-20 + 3q-18 + 3q-16 + 3q-14 + 5q-12 + 2q-10 + 5q-8 + 2q-6 - q-4 + 3q-2 + q4

HOMFLY-PT Polynomial: 1 + z2 + a2z-2 + a2 - a2z4 - 2a4z-2 - 3a4 - 2a4z2 - 2a4z4 + a6z-2 - 2a6z2 - 2a6z4 + 2a8 + 3a8z2 - a10

Kauffman Polynomial: 1 - 2z2 + z4 - 2az3 + 2az5 + a2z-2 - 3a2 + 3a2z2 - 3a2z4 + 3a2z6 - 2a3z-1 + 6a3z - 5a3z3 + 3a3z7 + 2a4z-2 - 8a4 + 13a4z2 - 9a4z4 + 3a4z8 - 2a5z-1 + 8a5z - 10a5z3 + 6a5z5 - 5a5z7 + 3a5z9 + a6z-2 - 3a6 - 3a6z2 + 19a6z4 - 21a6z6 + 5a6z8 + a6z10 - a7z3 + 10a7z5 - 17a7z7 + 6a7z9 + 4a8 - 18a8z2 + 38a8z4 - 30a8z6 + 5a8z8 + a8z10 - 4a9z + 11a9z3 - 2a9z5 - 8a9z7 + 3a9z9 + 2a10 - 7a10z2 + 14a10z4 - 12a10z6 + 3a10z8 - 2a11z + 5a11z3 - 4a11z5 + a11z7

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 3           1
j = 1          1 
j = -1         41 
j = -3        53  
j = -5       62   
j = -7      65    
j = -9     76     
j = -11    58      
j = -13   45       
j = -15  25        
j = -17 14         
j = -19 2          
j = -211           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 437]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 437]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[18, 11, 19, 12], X[14, 8, 15, 7], 
 
>   X[8, 14, 9, 13], X[22, 15, 13, 16], X[20, 17, 21, 18], X[16, 21, 17, 22], 
 
>   X[12, 19, 5, 20], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -9}, 
 
>   {5, -4, 6, -8, 7, -3, 9, -7, 8, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
      -10   3    6    9    10   13   12   11   7    5
-2 - q    + -- - -- + -- - -- + -- - -- + -- - -- + - + q
             9    8    7    6    5    4    3    2   q
            q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -32    -30    2     -26    3     -20    3     3     3     5     2    5
-q    - q    + --- - q    + --- - q    + --- + --- + --- + --- + --- + -- + 
                28           22           18    16    14    12    10    8
               q            q            q     q     q     q     q     q
 
    2     -4   3     4
>   -- - q   + -- + q
     6          2
    q          q
In[8]:=
HOMFLYPT[Link[11, Alternating, 437]][a, z]
Out[8]=   
                              2      4    6
     2      4      8    10   a    2 a    a     2      4  2      6  2
1 + a  - 3 a  + 2 a  - a   + -- - ---- + -- + z  - 2 a  z  - 2 a  z  + 
                              2     2     2
                             z     z     z
 
       8  2    2  4      4  4      6  4
>   3 a  z  - a  z  - 2 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 437]][a, z]
Out[9]=   
                                         2      4    6      3      5
       2      4      6      8      10   a    2 a    a    2 a    2 a       3
1 - 3 a  - 8 a  - 3 a  + 4 a  + 2 a   + -- + ---- + -- - ---- - ---- + 6 a  z + 
                                         2     2     2    z      z
                                        z     z     z
 
       5        9        11        2      2  2       4  2      6  2
>   8 a  z - 4 a  z - 2 a   z - 2 z  + 3 a  z  + 13 a  z  - 3 a  z  - 
 
        8  2      10  2        3      3  3       5  3    7  3       9  3
>   18 a  z  - 7 a   z  - 2 a z  - 5 a  z  - 10 a  z  - a  z  + 11 a  z  + 
 
       11  3    4      2  4      4  4       6  4       8  4       10  4
>   5 a   z  + z  - 3 a  z  - 9 a  z  + 19 a  z  + 38 a  z  + 14 a   z  + 
 
         5      5  5       7  5      9  5      11  5      2  6       6  6
>   2 a z  + 6 a  z  + 10 a  z  - 2 a  z  - 4 a   z  + 3 a  z  - 21 a  z  - 
 
        8  6       10  6      3  7      5  7       7  7      9  7    11  7
>   30 a  z  - 12 a   z  + 3 a  z  - 5 a  z  - 17 a  z  - 8 a  z  + a   z  + 
 
       4  8      6  8      8  8      10  8      5  9      7  9      9  9
>   3 a  z  + 5 a  z  + 5 a  z  + 3 a   z  + 3 a  z  + 6 a  z  + 3 a  z  + 
 
     6  10    8  10
>   a  z   + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    4     1        2        1        4        2        5        4
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 3   q    21  9    19  8    17  8    17  7    15  7    15  6    13  6
q        q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        5        8        7       6       6       5       6      2
>   ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ---- + 
     13  5    11  5    11  4    9  4    9  3    7  3    7  2    5  2    5
    q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
     5     t          3  2
>   ---- + - + q t + q  t
     3     q
    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a437
L11a436
L11a436
L11a438
L11a438