© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a432
L11a432
L11a434
L11a434
L11a433
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a433

Visit L11a433's page at Knotilus!

Acknowledgement

L11a433 as Morse Link
DrawMorseLink

PD Presentation: X6172 X14,6,15,5 X8493 X2,16,3,15 X16,7,17,8 X18,14,19,13 X22,9,13,10 X20,11,21,12 X12,19,5,20 X10,21,11,22 X4,17,1,18

Gauss Code: {{1, -4, 3, -11}, {2, -1, 5, -3, 7, -10, 8, -9}, {6, -2, 4, -5, 11, -6, 9, -8, 10, -7}}

Jones Polynomial: - q-7 + 4q-6 - 6q-5 + 11q-4 - 14q-3 + 18q-2 - 17q-1 + 16 - 12q + 8q2 - 4q3 + q4

A2 (sl(3)) Invariant: - q-22 + q-20 + 3q-18 + q-16 + 6q-14 + 5q-12 + 2q-10 + 6q-8 + 2q-4 + q-2 - 1 + 4q2 - 3q4 + q6 + q8 - 2q10 + q12

HOMFLY-PT Polynomial: a-2z2 + a-2z4 + 1 - z2 - 2z4 - z6 + a2z-2 - 2a2z2 - 2a2z4 - a2z6 - 2a4z-2 - a4 + 3a4z2 + 2a4z4 + a6z-2 - a6z2

Kauffman Polynomial: a-4z4 - 2a-3z3 + 4a-3z5 + 2a-2z2 - 8a-2z4 + 8a-2z6 + 3a-1z3 - 12a-1z5 + 10a-1z7 + 1 - 2z2 + 2z4 - 11z6 + 9z8 + 2az3 - 6az5 - 5az7 + 6az9 + a2z-2 - a2 - 14a2z2 + 39a2z4 - 38a2z6 + 9a2z8 + 2a2z10 - 2a3z-1 + 4a3z - 9a3z3 + 30a3z5 - 34a3z7 + 11a3z9 + 2a4z-2 - 4a4 - 13a4z2 + 45a4z4 - 35a4z6 + 4a4z8 + 2a4z10 - 2a5z-1 + 4a5z - 5a5z3 + 17a5z5 - 18a5z7 + 5a5z9 + a6z-2 - 3a6 - 3a6z2 + 17a6z4 - 16a6z6 + 4a6z8 + a7z3 - 3a7z5 + a7z7

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 9           1
j = 7          3 
j = 5         51 
j = 3        73  
j = 1       95   
j = -1      109    
j = -3     87     
j = -5    610      
j = -7   58       
j = -9  38        
j = -11 13         
j = -13 3          
j = -151           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 433]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 433]]
Out[4]=   
PD[X[6, 1, 7, 2], X[14, 6, 15, 5], X[8, 4, 9, 3], X[2, 16, 3, 15], 
 
>   X[16, 7, 17, 8], X[18, 14, 19, 13], X[22, 9, 13, 10], X[20, 11, 21, 12], 
 
>   X[12, 19, 5, 20], X[10, 21, 11, 22], X[4, 17, 1, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11}, {2, -1, 5, -3, 7, -10, 8, -9}, 
 
>   {6, -2, 4, -5, 11, -6, 9, -8, 10, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
      -7   4    6    11   14   18   17             2      3    4
16 - q   + -- - -- + -- - -- + -- - -- - 12 q + 8 q  - 4 q  + q
            6    5    4    3    2   q
           q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -22    -20    3     -16    6     5     2    6    2     -2      2      4
-1 - q    + q    + --- + q    + --- + --- + --- + -- + -- + q   + 4 q  - 3 q  + 
                    18           14    12    10    8    4
                   q            q     q     q     q    q
 
     6    8      10    12
>   q  + q  - 2 q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 433]][a, z]
Out[8]=   
          2      4    6         2                                       4
     4   a    2 a    a     2   z       2  2      4  2    6  2      4   z
1 - a  + -- - ---- + -- - z  + -- - 2 a  z  + 3 a  z  - a  z  - 2 z  + -- - 
          2     2     2         2                                       2
         z     z     z         a                                       a
 
       2  4      4  4    6    2  6
>   2 a  z  + 2 a  z  - z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 433]][a, z]
Out[9]=   
                        2      4    6      3      5
     2      4      6   a    2 a    a    2 a    2 a       3        5        2
1 - a  - 4 a  - 3 a  + -- + ---- + -- - ---- - ---- + 4 a  z + 4 a  z - 2 z  + 
                        2     2     2    z      z
                       z     z     z
 
       2                                      3      3
    2 z        2  2       4  2      6  2   2 z    3 z         3      3  3
>   ---- - 14 a  z  - 13 a  z  - 3 a  z  - ---- + ---- + 2 a z  - 9 a  z  - 
      2                                      3     a
     a                                      a
 
                              4      4
       5  3    7  3      4   z    8 z        2  4       4  4       6  4
>   5 a  z  + a  z  + 2 z  + -- - ---- + 39 a  z  + 45 a  z  + 17 a  z  + 
                              4     2
                             a     a
 
       5       5                                                       6
    4 z    12 z         5       3  5       5  5      7  5       6   8 z
>   ---- - ----- - 6 a z  + 30 a  z  + 17 a  z  - 3 a  z  - 11 z  + ---- - 
      3      a                                                        2
     a                                                               a
 
                                         7
        2  6       4  6       6  6   10 z         7       3  7       5  7
>   38 a  z  - 35 a  z  - 16 a  z  + ----- - 5 a z  - 34 a  z  - 18 a  z  + 
                                       a
 
     7  7      8      2  8      4  8      6  8        9       3  9      5  9
>   a  z  + 9 z  + 9 a  z  + 4 a  z  + 4 a  z  + 6 a z  + 11 a  z  + 5 a  z  + 
 
       2  10      4  10
>   2 a  z   + 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
9           1        3        1        3        3       8       5       8
- + 9 q + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
q          15  7    13  6    11  6    11  5    9  5    9  4    7  4    7  3
          q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
      6      10       8      7     10               3        3  2      5  2
>   ----- + ----- + ----- + ---- + --- + 5 q t + 7 q  t + 3 q  t  + 5 q  t  + 
     5  3    5  2    3  2    3     q t
    q  t    q  t    q  t    q  t
 
     5  3      7  3    9  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a433
L11a432
L11a432
L11a434
L11a434