© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a427
L11a427
L11a429
L11a429
L11a428
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a428

Visit L11a428's page at Knotilus!

Acknowledgement

L11a428 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X14,5,15,6 X20,7,21,8 X8,19,9,20 X10,13,5,14 X16,22,17,21 X18,12,19,11 X22,18,11,17 X2,9,3,10 X4,16,1,15

Gauss Code: {{1, -10, 2, -11}, {3, -1, 4, -5, 10, -6}, {8, -2, 6, -3, 11, -7, 9, -8, 5, -4, 7, -9}}

Jones Polynomial: q-6 - 3q-5 + 8q-4 - 12q-3 + 19q-2 - 20q-1 + 22 - 19q + 14q2 - 9q3 + 4q4 - q5

A2 (sl(3)) Invariant: q-18 + q-14 + 5q-12 + 2q-10 + 10q-8 + 6q-6 + 4q-4 + 6q-2 - 4 + 3q2 - 5q4 - q6 + q8 - 3q10 + 2q12 - q14

HOMFLY-PT Polynomial: - a-2z-2 - 2a-2 - 3a-2z2 - 3a-2z4 - a-2z6 + 4z-2 + 9 + 11z2 + 10z4 + 5z6 + z8 - 5a2z-2 - 10a2 - 12a2z2 - 8a2z4 - 2a2z6 + 2a4z-2 + 3a4 + 3a4z2 + a4z4

Kauffman Polynomial: - a-5z3 + a-5z5 - 5a-4z4 + 4a-4z6 + a-3z-1 - 2a-3z + 6a-3z3 - 13a-3z5 + 8a-3z7 - a-2z-2 + 2a-2 - 8a-2z2 + 16a-2z4 - 19a-2z6 + 10a-2z8 + 5a-1z-1 - 13a-1z + 16a-1z3 - 7a-1z5 - 6a-1z7 + 7a-1z9 - 4z-2 + 13 - 30z2 + 53z4 - 45z6 + 14z8 + 2z10 + 9az-1 - 27az + 26az3 + 5az5 - 23az7 + 12az9 - 5a2z-2 + 20a2 - 46a2z2 + 59a2z4 - 41a2z6 + 10a2z8 + 2a2z10 + 5a3z-1 - 16a3z + 20a3z3 - 9a3z5 - 6a3z7 + 5a3z9 - 2a4z-2 + 10a4 - 22a4z2 + 24a4z4 - 18a4z6 + 6a4z8 + 3a5z3 - 7a5z5 + 3a5z7 + 2a6z2 - 3a6z4 + a6z6

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 11           1
j = 9          3 
j = 7         61 
j = 5        83  
j = 3       116   
j = 1      118    
j = -1     1113     
j = -3    89      
j = -5   512       
j = -7  37        
j = -9  5         
j = -1113          
j = -131           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 428]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 428]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 5, 15, 6], X[20, 7, 21, 8], 
 
>   X[8, 19, 9, 20], X[10, 13, 5, 14], X[16, 22, 17, 21], X[18, 12, 19, 11], 
 
>   X[22, 18, 11, 17], X[2, 9, 3, 10], X[4, 16, 1, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {3, -1, 4, -5, 10, -6}, 
 
>   {8, -2, 6, -3, 11, -7, 9, -8, 5, -4, 7, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
      -6   3    8    12   19   20              2      3      4    5
22 + q   - -- + -- - -- + -- - -- - 19 q + 14 q  - 9 q  + 4 q  - q
            5    4    3    2   q
           q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -18    -14    5     2    10   6    4    6       2      4    6    8
-4 + q    + q    + --- + --- + -- + -- + -- + -- + 3 q  - 5 q  - q  + q  - 
                    12    10    8    6    4    2
                   q     q     q    q    q    q
 
       10      12    14
>   3 q   + 2 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 428]][a, z]
Out[8]=   
                                        2      4              2
    2        2      4   4      1     5 a    2 a        2   3 z        2  2
9 - -- - 10 a  + 3 a  + -- - ----- - ---- + ---- + 11 z  - ---- - 12 a  z  + 
     2                   2    2  2     2      2              2
    a                   z    a  z     z      z              a
 
                         4                             6
       4  2       4   3 z       2  4    4  4      6   z       2  6    8
>   3 a  z  + 10 z  - ---- - 8 a  z  + a  z  + 5 z  - -- - 2 a  z  + z
                        2                              2
                       a                              a
In[9]:=
Kauffman[Link[11, Alternating, 428]][a, z]
Out[9]=   
                                          2      4                         3
     2        2       4   4      1     5 a    2 a     1      5    9 a   5 a
13 + -- + 20 a  + 10 a  - -- - ----- - ---- - ---- + ---- + --- + --- + ---- - 
      2                    2    2  2     2      2     3     a z    z     z
     a                    z    a  z     z      z     a  z
 
                                               2
    2 z   13 z                3         2   8 z        2  2       4  2
>   --- - ---- - 27 a z - 16 a  z - 30 z  - ---- - 46 a  z  - 22 a  z  + 
     3     a                                  2
    a                                        a
 
               3      3       3                                             4
       6  2   z    6 z    16 z          3       3  3      5  3       4   5 z
>   2 a  z  - -- + ---- + ----- + 26 a z  + 20 a  z  + 3 a  z  + 53 z  - ---- + 
               5     3      a                                              4
              a     a                                                     a
 
        4                                    5       5      5
    16 z        2  4       4  4      6  4   z    13 z    7 z         5
>   ----- + 59 a  z  + 24 a  z  - 3 a  z  + -- - ----- - ---- + 5 a z  - 
      2                                      5     3      a
     a                                      a     a
 
                                   6       6
       3  5      5  5       6   4 z    19 z        2  6       4  6    6  6
>   9 a  z  - 7 a  z  - 45 z  + ---- - ----- - 41 a  z  - 18 a  z  + a  z  + 
                                  4      2
                                 a      a
 
       7      7                                             8
    8 z    6 z          7      3  7      5  7       8   10 z        2  8
>   ---- - ---- - 23 a z  - 6 a  z  + 3 a  z  + 14 z  + ----- + 10 a  z  + 
      3     a                                             2
     a                                                   a
 
                 9
       4  8   7 z          9      3  9      10      2  10
>   6 a  z  + ---- + 12 a z  + 5 a  z  + 2 z   + 2 a  z
               a
In[10]:=
Kh[L][q, t]
Out[10]=   
13            1        1        3        5       3       7       5      12
-- + 11 q + ------ + ------ + ------ + ----- + ----- + ----- + ----- + ----- + 
q            13  6    11  6    11  5    9  4    7  4    7  3    5  3    5  2
            q   t    q   t    q   t    q  t    q  t    q  t    q  t    q  t
 
      8      9     11                3        3  2      5  2      5  3
>   ----- + ---- + --- + 8 q t + 11 q  t + 6 q  t  + 8 q  t  + 3 q  t  + 
     3  2    3     q t
    q  t    q  t
 
       7  3    7  4      9  4    11  5
>   6 q  t  + q  t  + 3 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a428
L11a427
L11a427
L11a429
L11a429