© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a408
L11a408
L11a410
L11a410
L11a409
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a409

Visit L11a409's page at Knotilus!

Acknowledgement

L11a409 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,4,13,3 X8,18,9,17 X14,8,15,7 X18,10,19,9 X10,12,5,11 X22,19,11,20 X20,15,21,16 X16,21,17,22 X2536 X4,14,1,13

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -3, 5, -6}, {6, -2, 11, -4, 8, -9, 3, -5, 7, -8, 9, -7}}

Jones Polynomial: - q-4 + 3q-3 - 7q-2 + 11q-1 - 14 + 18q - 16q2 + 16q3 - 11q4 + 7q5 - 3q6 + q7

A2 (sl(3)) Invariant: - q-12 - q-8 - 3q-6 + q-4 - 3q-2 + 2 + 4q2 + 3q4 + 10q6 + 3q8 + 7q10 + 2q12 + 3q16 - q18 + q20

HOMFLY-PT Polynomial: 2a-4z-2 + 4a-4 + 6a-4z2 + 4a-4z4 + a-4z6 - 5a-2z-2 - 13a-2 - 19a-2z2 - 15a-2z4 - 6a-2z6 - a-2z8 + 4z-2 + 12 + 15z2 + 9z4 + 2z6 - a2z-2 - 3a2 - 3a2z2 - a2z4

Kauffman Polynomial: - a-8z2 + a-8z4 - 2a-7z3 + 3a-7z5 - a-6 + 5a-6z2 - 7a-6z4 + 6a-6z6 + 5a-5z3 - 10a-5z5 + 8a-5z7 - 2a-4z-2 + 8a-4 - 17a-4z2 + 21a-4z4 - 18a-4z6 + 9a-4z8 + 5a-3z-1 - 18a-3z + 33a-3z3 - 26a-3z5 + a-3z7 + 5a-3z9 - 5a-2z-2 + 20a-2 - 50a-2z2 + 72a-2z4 - 58a-2z6 + 16a-2z8 + a-2z10 + 9a-1z-1 - 33a-1z + 50a-1z3 - 24a-1z5 - 12a-1z7 + 8a-1z9 - 4z-2 + 15 - 34z2 + 56z4 - 45z6 + 10z8 + z10 + 5az-1 - 19az + 30az3 - 15az5 - 4az7 + 3az9 - a2z-2 + 3a2 - 7a2z2 + 13a2z4 - 11a2z6 + 3a2z8 + a3z-1 - 4a3z + 6a3z3 - 4a3z5 + a3z7

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 15           1
j = 13          31
j = 11         4  
j = 9        73  
j = 7       94   
j = 5      88    
j = 3     108     
j = 1    610      
j = -1   58       
j = -3  26        
j = -5 15         
j = -7 2          
j = -91           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 409]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 409]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[8, 18, 9, 17], X[14, 8, 15, 7], 
 
>   X[18, 10, 19, 9], X[10, 12, 5, 11], X[22, 19, 11, 20], X[20, 15, 21, 16], 
 
>   X[16, 21, 17, 22], X[2, 5, 3, 6], X[4, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -3, 5, -6}, 
 
>   {6, -2, 11, -4, 8, -9, 3, -5, 7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
       -4   3    7    11              2       3       4      5      6    7
-14 - q   + -- - -- + -- + 18 q - 16 q  + 16 q  - 11 q  + 7 q  - 3 q  + q
             3    2   q
            q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -12    -8   3     -4   3       2      4       6      8      10      12
2 - q    - q   - -- + q   - -- + 4 q  + 3 q  + 10 q  + 3 q  + 7 q   + 2 q   + 
                  6          2
                 q          q
 
       16    18    20
>   3 q   - q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 409]][a, z]
Out[8]=   
                                            2              2       2
     4    13      2   4      2       5     a        2   6 z    19 z
12 + -- - -- - 3 a  + -- + ----- - ----- - -- + 15 z  + ---- - ----- - 
      4    2           2    4  2    2  2    2             4      2
     a    a           z    a  z    a  z    z             a      a
 
                        4       4                   6      6    8
       2  2      4   4 z    15 z     2  4      6   z    6 z    z
>   3 a  z  + 9 z  + ---- - ----- - a  z  + 2 z  + -- - ---- - --
                       4      2                     4     2     2
                      a      a                     a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 409]][a, z]
Out[9]=   
                                                  2                       3
      -6   8    20      2   4      2       5     a     5      9    5 a   a
15 - a   + -- + -- + 3 a  - -- - ----- - ----- - -- + ---- + --- + --- + -- - 
            4    2           2    4  2    2  2    2    3     a z    z    z
           a    a           z    a  z    a  z    z    a  z
 
                                             2      2       2       2
    18 z   33 z               3         2   z    5 z    17 z    50 z
>   ---- - ---- - 19 a z - 4 a  z - 34 z  - -- + ---- - ----- - ----- - 
      3     a                                8     6      4       2
     a                                      a     a      a       a
 
                 3      3       3       3                                4
       2  2   2 z    5 z    33 z    50 z          3      3  3       4   z
>   7 a  z  - ---- + ---- + ----- + ----- + 30 a z  + 6 a  z  + 56 z  + -- - 
                7      5      3       a                                  8
               a      a      a                                          a
 
       4       4       4                 5       5       5       5
    7 z    21 z    72 z        2  4   3 z    10 z    26 z    24 z          5
>   ---- + ----- + ----- + 13 a  z  + ---- - ----- - ----- - ----- - 15 a z  - 
      6      4       2                  7      5       3       a
     a      a       a                  a      a       a
 
                         6       6       6                 7    7       7
       3  5       6   6 z    18 z    58 z        2  6   8 z    z    12 z
>   4 a  z  - 45 z  + ---- - ----- - ----- - 11 a  z  + ---- + -- - ----- - 
                        6      4       2                  5     3     a
                       a      a       a                  a     a
 
                                8       8                9      9
         7    3  7       8   9 z    16 z       2  8   5 z    8 z         9
>   4 a z  + a  z  + 10 z  + ---- + ----- + 3 a  z  + ---- + ---- + 3 a z  + 
                               4      2                 3     a
                              a      a                 a
 
           10
     10   z
>   z   + ---
           2
          a
In[10]:=
Kh[L][q, t]
Out[10]=   
           3     1       2       1       5       2       6      5      8
10 q + 10 q  + ----- + ----- + ----- + ----- + ----- + ----- + ---- + --- + 
                9  5    7  4    5  4    5  3    3  3    3  2      2   q t
               q  t    q  t    q  t    q  t    q  t    q  t    q t
 
    6 q      3        5        5  2      7  2      7  3      9  3      9  4
>   --- + 8 q  t + 8 q  t + 8 q  t  + 9 q  t  + 4 q  t  + 7 q  t  + 3 q  t  + 
     t
 
       11  4      13  5    13  6    15  6
>   4 q   t  + 3 q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a409
L11a408
L11a408
L11a410
L11a410