© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a404
L11a404
L11a406
L11a406
L11a405
Knotscape
This page is passe. Go here instead!

The 3-Component Link

L11a405

Visit L11a405's page at Knotilus!

Acknowledgement

L11a405 as Morse Link
DrawMorseLink

PD Presentation: X6172 X12,3,13,4 X10,13,5,14 X20,15,21,16 X14,7,15,8 X22,17,11,18 X16,21,17,22 X8,20,9,19 X18,10,19,9 X2536 X4,11,1,12

Gauss Code: {{1, -10, 2, -11}, {10, -1, 5, -8, 9, -3}, {11, -2, 3, -5, 4, -7, 6, -9, 8, -4, 7, -6}}

Jones Polynomial: - q-11 + 3q-10 - 7q-9 + 11q-8 - 15q-7 + 18q-6 - 16q-5 + 16q-4 - 10q-3 + 7q-2 - 3q-1 + 1

A2 (sl(3)) Invariant: - q-34 - q-32 - 4q-28 - q-22 + 6q-20 + 2q-18 + 8q-16 + 6q-14 + 4q-12 + 7q-10 - q-8 + 2q-6 - q-2 + 1

HOMFLY-PT Polynomial: 2a2z2 + a2z4 + 2a4z-2 + 7a4 + 5a4z2 - a4z4 - a4z6 - 5a6z-2 - 14a6 - 14a6z2 - 8a6z4 - 2a6z6 + 4a8z-2 + 9a8 + 9a8z2 + 3a8z4 - a10z-2 - 2a10 - a10z2

Kauffman Polynomial: 2a2z2 - 3a2z4 + a2z6 + 4a3z3 - 8a3z5 + 3a3z7 - 2a4z-2 + 9a4 - 18a4z2 + 18a4z4 - 15a4z6 + 5a4z8 + 5a5z-1 - 13a5z + 13a5z3 - 5a5z5 - 6a5z7 + 4a5z9 - 5a6z-2 + 21a6 - 57a6z2 + 77a6z4 - 50a6z6 + 12a6z8 + a6z10 + 9a7z-1 - 29a7z + 36a7z3 - 6a7z5 - 14a7z7 + 8a7z9 - 4a8z-2 + 18a8 - 48a8z2 + 72a8z4 - 48a8z6 + 13a8z8 + a8z10 + 5a9z-1 - 21a9z + 33a9z3 - 18a9z5 + 4a9z9 - a10z-2 + 5a10 - 10a10z2 + 11a10z4 - 11a10z6 + 6a10z8 + a11z-1 - 4a11z + 4a11z3 - 8a11z5 + 5a11z7 + a12z2 - 5a12z4 + 3a12z6 + a13z - 2a13z3 + a13z5

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 1           1
j = -1          2 
j = -3         51 
j = -5        63  
j = -7       104   
j = -9      88    
j = -11     108     
j = -13    69      
j = -15   59       
j = -17  26        
j = -19 15         
j = -21 2          
j = -231           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
3
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 405]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 405]]
Out[4]=   
PD[X[6, 1, 7, 2], X[12, 3, 13, 4], X[10, 13, 5, 14], X[20, 15, 21, 16], 
 
>   X[14, 7, 15, 8], X[22, 17, 11, 18], X[16, 21, 17, 22], X[8, 20, 9, 19], 
 
>   X[18, 10, 19, 9], X[2, 5, 3, 6], X[4, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 5, -8, 9, -3}, 
 
>   {11, -2, 3, -5, 4, -7, 6, -9, 8, -4, 7, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
     -11    3    7    11   15   18   16   16   10   7    3
1 - q    + --- - -- + -- - -- + -- - -- + -- - -- + -- - -
            10    9    8    7    6    5    4    3    2   q
           q     q    q    q    q    q    q    q    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -34    -32    4     -22    6     2     8     6     4     7     -8   2
1 - q    - q    - --- - q    + --- + --- + --- + --- + --- + --- - q   + -- - 
                   28           20    18    16    14    12    10          6
                  q            q     q     q     q     q     q           q
 
     -2
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 405]][a, z]
Out[8]=   
                                 4      6      8    10
   4       6      8      10   2 a    5 a    4 a    a        2  2      4  2
7 a  - 14 a  + 9 a  - 2 a   + ---- - ---- + ---- - --- + 2 a  z  + 5 a  z  - 
                                2      2      2     2
                               z      z      z     z
 
        6  2      8  2    10  2    2  4    4  4      6  4      8  4    4  6
>   14 a  z  + 9 a  z  - a   z  + a  z  - a  z  - 8 a  z  + 3 a  z  - a  z  - 
 
       6  6
>   2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 405]][a, z]
Out[9]=   
                                  4      6      8    10      5      7      9
   4       6       8      10   2 a    5 a    4 a    a     5 a    9 a    5 a
9 a  + 21 a  + 18 a  + 5 a   - ---- - ---- - ---- - --- + ---- + ---- + ---- + 
                                 2      2      2     2     z      z      z
                                z      z      z     z
 
     11
    a         5         7         9        11      13        2  2       4  2
>   --- - 13 a  z - 29 a  z - 21 a  z - 4 a   z + a   z + 2 a  z  - 18 a  z  - 
     z
 
        6  2       8  2       10  2    12  2      3  3       5  3       7  3
>   57 a  z  - 48 a  z  - 10 a   z  + a   z  + 4 a  z  + 13 a  z  + 36 a  z  + 
 
        9  3      11  3      13  3      2  4       4  4       6  4       8  4
>   33 a  z  + 4 a   z  - 2 a   z  - 3 a  z  + 18 a  z  + 77 a  z  + 72 a  z  + 
 
        10  4      12  4      3  5      5  5      7  5       9  5      11  5
>   11 a   z  - 5 a   z  - 8 a  z  - 5 a  z  - 6 a  z  - 18 a  z  - 8 a   z  + 
 
     13  5    2  6       4  6       6  6       8  6       10  6      12  6
>   a   z  + a  z  - 15 a  z  - 50 a  z  - 48 a  z  - 11 a   z  + 3 a   z  + 
 
       3  7      5  7       7  7      11  7      4  8       6  8       8  8
>   3 a  z  - 6 a  z  - 14 a  z  + 5 a   z  + 5 a  z  + 12 a  z  + 13 a  z  + 
 
       10  8      5  9      7  9      9  9    6  10    8  10
>   6 a   z  + 4 a  z  + 8 a  z  + 4 a  z  + a  z   + a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5      1        2        1        5        2        6        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 5    3    23  9    21  8    19  8    19  7    17  7    17  6    15  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      9        6        9        10       8        8       8      10      4
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     15  5    13  5    13  4    11  4    11  3    9  3    9  2    7  2    7
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     6     t    2 t      2
>   ---- + -- + --- + q t
     5      3    q
    q  t   q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a405
L11a404
L11a404
L11a406
L11a406