© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a370
L11a370
L11a372
L11a372
L11a371
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a371

Visit L11a371's page at Knotilus!

Acknowledgement

L11a371 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X14,4,15,3 X22,14,11,13 X16,6,17,5 X2,11,3,12 X4,16,5,15 X6,22,7,21 X20,8,21,7 X18,10,19,9 X10,18,1,17 X8,20,9,19

Gauss Code: {{1, -5, 2, -6, 4, -7, 8, -11, 9, -10}, {5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3}}

Jones Polynomial: - q-1/2 + 2q1/2 - 4q3/2 + 6q5/2 - 8q7/2 + 9q9/2 - 9q11/2 + 7q13/2 - 6q15/2 + 3q17/2 - 2q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q4 - 2q6 + q8 + 2q14 + 2q18 + q20 + q22 + 3q24 - q32

HOMFLY-PT Polynomial: 2a-9z + a-9z3 - a-7z-1 - 3a-7z - 3a-7z3 - a-7z5 + a-5z-1 + 2a-5z - a-5z3 - a-5z5 - 2a-3z3 - a-3z5 + 2a-1z + a-1z3

Kauffman Polynomial: - 3a-12z2 + 4a-12z4 - a-12z6 + 3a-11z - 8a-11z3 + 8a-11z5 - 2a-11z7 - a-10z2 - 2a-10z4 + 6a-10z6 - 2a-10z8 + 3a-9z + a-9z3 - 7a-9z5 + 7a-9z7 - 2a-9z9 + 2a-8z2 - 5a-8z4 + a-8z6 + 2a-8z8 - a-8z10 + a-7z-1 - 8a-7z + 23a-7z3 - 33a-7z5 + 18a-7z7 - 4a-7z9 - a-6 + 5a-6z2 - 8a-6z4 + 2a-6z8 - a-6z10 + a-5z-1 - 6a-5z + 12a-5z3 - 14a-5z5 + 7a-5z7 - 2a-5z9 + 3a-4z2 - 4a-4z4 + 4a-4z6 - 2a-4z8 + a-3z3 + 3a-3z5 - 2a-3z7 - 2a-2z2 + 5a-2z4 - 2a-2z6 - 2a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          1 
j = 18         21 
j = 16        41  
j = 14       43   
j = 12      53    
j = 10     44     
j = 8    45      
j = 6   24       
j = 4  24        
j = 2 13         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 371]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 371]]
Out[4]=   
PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], X[16, 6, 17, 5], 
 
>   X[2, 11, 3, 12], X[4, 16, 5, 15], X[6, 22, 7, 21], X[20, 8, 21, 7], 
 
>   X[18, 10, 19, 9], X[10, 18, 1, 17], X[8, 20, 9, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 2, -6, 4, -7, 8, -11, 9, -10}, 
 
>   {5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2      7/2      9/2      11/2
-(-------) + 2 Sqrt[q] - 4 q    + 6 q    - 8 q    + 9 q    - 9 q     + 
  Sqrt[q]
 
       13/2      15/2      17/2      19/2    21/2
>   7 q     - 6 q     + 3 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    4      6    8      14      18    20    22      24    32
q   + q  - 2 q  + q  + 2 q   + 2 q   + q   + q   + 3 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 371]][a, z]
Out[8]=   
                                          3      3    3      3    3    5    5
   1       1     2 z   3 z   2 z   2 z   z    3 z    z    2 z    z    z    z
-(----) + ---- + --- - --- + --- + --- + -- - ---- - -- - ---- + -- - -- - -- - 
   7       5      9     7     5     a     9     7     5     3    a     7    5
  a  z    a  z   a     a     a           a     a     a     a          a    a
 
     5
    z
>   --
     3
    a
In[9]:=
Kauffman[Link[11, Alternating, 371]][a, z]
Out[9]=   
                                                      2    2       2      2
  -6    1      1     3 z   3 z   8 z   6 z   2 z   3 z    z     2 z    5 z
-a   + ---- + ---- + --- + --- - --- - --- - --- - ---- - --- + ---- + ---- + 
        7      5      11    9     7     5     a     12     10     8      6
       a  z   a  z   a     a     a     a           a      a      a      a
 
       2      2      3    3       3       3    3      3      4      4      4
    3 z    2 z    8 z    z    23 z    12 z    z    3 z    4 z    2 z    5 z
>   ---- - ---- - ---- + -- + ----- + ----- + -- + ---- + ---- - ---- - ---- - 
      4      2     11     9     7       5      3    a      12     10      8
     a      a     a      a     a       a      a           a      a       a
 
       4      4      4      5      5       5       5      5    5    6       6
    8 z    4 z    5 z    8 z    7 z    33 z    14 z    3 z    z    z     6 z
>   ---- - ---- + ---- + ---- - ---- - ----- - ----- + ---- - -- - --- + ---- + 
      6      4      2     11      9      7       5       3    a     12    10
     a      a      a     a       a      a       a       a          a     a
 
     6      6      6      7      7       7      7      7      8      8      8
    z    4 z    2 z    2 z    7 z    18 z    7 z    2 z    2 z    2 z    2 z
>   -- + ---- - ---- - ---- + ---- + ----- + ---- - ---- - ---- + ---- + ---- - 
     8     4      2     11      9      7       5      3     10      8      6
    a     a      a     a       a      a       a      a     a       a      a
 
       8      9      9      9    10    10
    2 z    2 z    4 z    2 z    z     z
>   ---- - ---- - ---- - ---- - --- - ---
      4      9      7      5     8     6
     a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
3 q  + 2 q  + ----- + - + -- + 4 q  t + 2 q  t + 4 q  t  + 4 q  t  + 5 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   4 q   t  + 4 q   t  + 5 q   t  + 3 q   t  + 4 q   t  + 3 q   t  + 
 
       16  6    16  7      18  7    18  8    20  8    22  9
>   4 q   t  + q   t  + 2 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a371
L11a370
L11a370
L11a372
L11a372