© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a36
L11a36
L11a38
L11a38
L11a37
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a37

Visit L11a37's page at Knotilus!

Acknowledgement

L11a37 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X18,15,19,16 X16,7,17,8 X8,17,9,18 X22,11,5,12 X20,13,21,14 X14,19,15,20 X12,21,13,22 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -9, 7, -8, 3, -4, 5, -3, 8, -7, 9, -6}}

Jones Polynomial: q-25/2 - 2q-23/2 + 4q-21/2 - 5q-19/2 + 6q-17/2 - 8q-15/2 + 7q-13/2 - 7q-11/2 + 5q-9/2 - 4q-7/2 + 2q-5/2 - q-3/2

A2 (sl(3)) Invariant: - q-40 - 2q-38 - q-34 - q-32 + 2q-30 + q-26 + 2q-24 + q-22 + 2q-20 + q-18 + 2q-16 + 2q-14 - q-12 + q-10 + q-8 - q-6 + q-4

HOMFLY-PT Polynomial: - a3z - a3z3 - a5z-1 - 2a5z - 2a5z3 + a7z-1 - 2a7z3 - a9z-1 - 2a9z - 2a9z3 + 2a11z-1 + 3a11z - a13z-1

Kauffman Polynomial: a3z - a3z3 + a4z2 - 2a4z4 + a5z-1 - 3a5z + 3a5z3 - 3a5z5 - a6 + a6z2 + 2a6z4 - 3a6z6 + a7z-1 - 4a7z + 4a7z3 + 3a7z5 - 3a7z7 + 6a8z6 - 3a8z8 + a9z-1 - 5a9z + 13a9z3 - 14a9z5 + 11a9z7 - 3a9z9 - 4a10 + 18a10z2 - 31a10z4 + 19a10z6 - a10z8 - a10z10 + 2a11z-1 - 8a11z + 23a11z3 - 38a11z5 + 25a11z7 - 5a11z9 - 7a12 + 28a12z2 - 39a12z4 + 16a12z6 + a12z8 - a12z10 + a13z-1 - 3a13z + 10a13z3 - 18a13z5 + 11a13z7 - 2a13z9 - 3a14 + 10a14z2 - 12a14z4 + 6a14z6 - a14z8

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -2           1
j = -4          21
j = -6         2  
j = -8        32  
j = -10       42   
j = -12      44    
j = -14     43     
j = -16    24      
j = -18   34       
j = -20  12        
j = -22 13         
j = -24 1          
j = -261           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 37]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 37]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[18, 15, 19, 16], X[16, 7, 17, 8], 
 
>   X[8, 17, 9, 18], X[22, 11, 5, 12], X[20, 13, 21, 14], X[14, 19, 15, 20], 
 
>   X[12, 21, 13, 22], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 6, -9, 7, -8, 3, -4, 5, -3, 
 
>    8, -7, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(25/2)     2       4       5       6       8       7       7      5
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ---- - 
            23/2    21/2    19/2    17/2    15/2    13/2    11/2    9/2
           q       q       q       q       q       q       q       q
 
     4      2      -(3/2)
>   ---- + ---- - q
     7/2    5/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -40    2     -34    -32    2     -26    2     -22    2     -18    2     2
-q    - --- - q    - q    + --- + q    + --- + q    + --- + q    + --- + --- - 
         38                  30           24           20           16    14
        q                   q            q            q            q     q
 
     -12    -10    -8    -6    -4
>   q    + q    + q   - q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 37]][a, z]
Out[8]=   
   5     7    9      11    13
  a     a    a    2 a     a      3        5        9        11      3  3
-(--) + -- - -- + ----- - --- - a  z - 2 a  z - 2 a  z + 3 a   z - a  z  - 
  z     z    z      z      z
 
       5  3      7  3      9  3
>   2 a  z  - 2 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 37]][a, z]
Out[9]=   
                               5    7    9      11    13
  6      10      12      14   a    a    a    2 a     a      3        5
-a  - 4 a   - 7 a   - 3 a   + -- + -- + -- + ----- + --- + a  z - 3 a  z - 
                              z    z    z      z      z
 
       7        9        11        13      4  2    6  2       10  2
>   4 a  z - 5 a  z - 8 a   z - 3 a   z + a  z  + a  z  + 18 a   z  + 
 
        12  2       14  2    3  3      5  3      7  3       9  3       11  3
>   28 a   z  + 10 a   z  - a  z  + 3 a  z  + 4 a  z  + 13 a  z  + 23 a   z  + 
 
        13  3      4  4      6  4       10  4       12  4       14  4
>   10 a   z  - 2 a  z  + 2 a  z  - 31 a   z  - 39 a   z  - 12 a   z  - 
 
       5  5      7  5       9  5       11  5       13  5      6  6      8  6
>   3 a  z  + 3 a  z  - 14 a  z  - 38 a   z  - 18 a   z  - 3 a  z  + 6 a  z  + 
 
        10  6       12  6      14  6      7  7       9  7       11  7
>   19 a   z  + 16 a   z  + 6 a   z  - 3 a  z  + 11 a  z  + 25 a   z  + 
 
        13  7      8  8    10  8    12  8    14  8      9  9      11  9
>   11 a   z  - 3 a  z  - a   z  + a   z  - a   z  - 3 a  z  - 5 a   z  - 
 
       13  9    10  10    12  10
>   2 a   z  - a   z   - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -4    -2      1         1         1        3        1        2        3
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             26  11    24  10    22  10    22  9    20  9    20  8    18  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      4        2        4        4        3        4        4        4
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     18  7    16  7    16  6    14  6    14  5    12  5    12  4    10  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      2        3       2       2      2
>   ------ + ----- + ----- + ----- + ----
     10  3    8  3    8  2    6  2    4
    q   t    q  t    q  t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a37
L11a36
L11a36
L11a38
L11a38