© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a359
L11a359
L11a361
L11a361
L11a360
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a360

Visit L11a360's page at Knotilus!

Acknowledgement

L11a360 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X14,4,15,3 X22,14,11,13 X16,6,17,5 X18,8,19,7 X20,10,21,9 X2,11,3,12 X4,16,5,15 X6,18,7,17 X8,20,9,19 X10,22,1,21

Gauss Code: {{1, -7, 2, -8, 4, -9, 5, -10, 6, -11}, {7, -1, 3, -2, 8, -4, 9, -5, 10, -6, 11, -3}}

Jones Polynomial: - q3/2 + q5/2 - 2q7/2 + 2q9/2 - 3q11/2 + 3q13/2 - 3q15/2 + 3q17/2 - 3q19/2 + 2q21/2 - 2q23/2 + q25/2

A2 (sl(3)) Invariant: q6 + q8 + q10 + q12 + q16 + q20 + q24 + q26 + q28 + q30 - q36

HOMFLY-PT Polynomial: 4a-9z + 10a-9z3 + 6a-9z5 + a-9z7 - a-7z-1 - 11a-7z - 25a-7z3 - 22a-7z5 - 8a-7z7 - a-7z9 + a-5z-1 + 10a-5z + 15a-5z3 + 7a-5z5 + a-5z7

Kauffman Polynomial: - a-16z2 + a-15z - 2a-15z3 + a-14z2 - 2a-14z4 + a-13z + 2a-13z3 - 2a-13z5 + 4a-12z4 - 2a-12z6 - a-11z - 2a-11z3 + 6a-11z5 - 2a-11z7 - a-10z2 - 6a-10z4 + 8a-10z6 - 2a-10z8 - 3a-9z + 11a-9z3 - 18a-9z5 + 11a-9z7 - 2a-9z9 + 3a-8z2 - 3a-8z4 - 5a-8z6 + 5a-8z8 - a-8z10 + a-7z-1 - 13a-7z + 42a-7z3 - 48a-7z5 + 21a-7z7 - 3a-7z9 - a-6 + 2a-6z2 + 9a-6z4 - 15a-6z6 + 7a-6z8 - a-6z10 + a-5z-1 - 11a-5z + 25a-5z3 - 22a-5z5 + 8a-5z7 - a-5z9

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 26           1
j = 24          1 
j = 22         11 
j = 20        21  
j = 18       22   
j = 16      11    
j = 14     22     
j = 12    11      
j = 10   12       
j = 8  11        
j = 6 12         
j = 4            
j = 21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 360]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 360]]
Out[4]=   
PD[X[12, 1, 13, 2], X[14, 4, 15, 3], X[22, 14, 11, 13], X[16, 6, 17, 5], 
 
>   X[18, 8, 19, 7], X[20, 10, 21, 9], X[2, 11, 3, 12], X[4, 16, 5, 15], 
 
>   X[6, 18, 7, 17], X[8, 20, 9, 19], X[10, 22, 1, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -7, 2, -8, 4, -9, 5, -10, 6, -11}, 
 
>   {7, -1, 3, -2, 8, -4, 9, -5, 10, -6, 11, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
  3/2    5/2      7/2      9/2      11/2      13/2      15/2      17/2
-q    + q    - 2 q    + 2 q    - 3 q     + 3 q     - 3 q     + 3 q     - 
 
       19/2      21/2      23/2    25/2
>   3 q     + 2 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 6    8    10    12    16    20    24    26    28    30    36
q  + q  + q   + q   + q   + q   + q   + q   + q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 360]][a, z]
Out[8]=   
                                         3       3       3      5       5
   1       1     4 z   11 z   10 z   10 z    25 z    15 z    6 z    22 z
-(----) + ---- + --- - ---- + ---- + ----- - ----- + ----- + ---- - ----- + 
   7       5      9      7      5      9       7       5       9      7
  a  z    a  z   a      a      a      a       a       a       a      a
 
       5    7      7    7    9
    7 z    z    8 z    z    z
>   ---- + -- - ---- + -- - --
      5     9     7     5    7
     a     a     a     a    a
In[9]:=
Kauffman[Link[11, Alternating, 360]][a, z]
Out[9]=   
                                                            2     2     2
  -6    1      1      z     z     z    3 z   13 z   11 z   z     z     z
-a   + ---- + ---- + --- + --- - --- - --- - ---- - ---- - --- + --- - --- + 
        7      5      15    13    11    9      7      5     16    14    10
       a  z   a  z   a     a     a     a      a      a     a     a     a
 
       2      2      3      3      3       3       3       3      4      4
    3 z    2 z    2 z    2 z    2 z    11 z    42 z    25 z    2 z    4 z
>   ---- + ---- - ---- + ---- - ---- + ----- + ----- + ----- - ---- + ---- - 
      8      6     15     13     11      9       7       5      14     12
     a      a     a      a      a       a       a       a      a      a
 
       4      4      4      5      5       5       5       5      6      6
    6 z    3 z    9 z    2 z    6 z    18 z    48 z    22 z    2 z    8 z
>   ---- - ---- + ---- - ---- + ---- - ----- - ----- - ----- - ---- + ---- - 
     10      8      6     13     11      9       7       5      12     10
    a       a      a     a      a       a       a       a      a      a
 
       6       6      7       7       7      7      8      8      8      9
    5 z    15 z    2 z    11 z    21 z    8 z    2 z    5 z    7 z    2 z
>   ---- - ----- - ---- + ----- + ----- + ---- - ---- + ---- + ---- - ---- - 
      8      6      11      9       7       5     10      8      6      9
     a      a      a       a       a       a     a       a      a      a
 
       9    9    10    10
    3 z    z    z     z
>   ---- - -- - --- - ---
      7     5    8     6
     a     a    a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
             2    6
   6    8   q    q     8      10        10  2    12  2    12  3      14  3
2 q  + q  + -- + -- + q  t + q   t + 2 q   t  + q   t  + q   t  + 2 q   t  + 
             2   t
            t
 
       14  4    16  4    16  5      18  5      18  6      20  6    20  7
>   2 q   t  + q   t  + q   t  + 2 q   t  + 2 q   t  + 2 q   t  + q   t  + 
 
     22  7    22  8    24  8    26  9
>   q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a360
L11a359
L11a359
L11a361
L11a361