© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a357
L11a357
L11a359
L11a359
L11a358
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a358

Visit L11a358's page at Knotilus!

Acknowledgement

L11a358 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X14,3,15,4 X20,10,21,9 X16,6,17,5 X18,8,19,7 X22,15,11,16 X6,18,7,17 X8,20,9,19 X4,22,5,21 X2,11,3,12 X10,13,1,14

Gauss Code: {{1, -10, 2, -9, 4, -7, 5, -8, 3, -11}, {10, -1, 11, -2, 6, -4, 7, -5, 8, -3, 9, -6}}

Jones Polynomial: q-7/2 - 2q-5/2 + 3q-3/2 - 6q-1/2 + 7q1/2 - 9q3/2 + 9q5/2 - 9q7/2 + 7q9/2 - 5q11/2 + 3q13/2 - q15/2

A2 (sl(3)) Invariant: - q-10 + 2q-2 + 1 + 3q2 + q4 + 2q8 - q10 + 2q12 - q20 + q22

HOMFLY-PT Polynomial: - a-5z - 3a-5z3 - a-5z5 - a-3z-1 - a-3z + 3a-3z3 + 4a-3z5 + a-3z7 + a-1z-1 + 6a-1z + 8a-1z3 + 5a-1z5 + a-1z7 - 3az - 4az3 - az5

Kauffman Polynomial: - a-9z3 + a-8z2 - 3a-8z4 - a-7z + 4a-7z3 - 5a-7z5 - a-6z2 + 7a-6z4 - 6a-6z6 - 2a-5z3 + 10a-5z5 - 6a-5z7 + a-4z2 - 4a-4z4 + 11a-4z6 - 5a-4z8 + a-3z-1 - 3a-3z - a-3z3 + 2a-3z5 + 6a-3z7 - 3a-3z9 - a-2 + 7a-2z2 - 23a-2z4 + 19a-2z6 - 2a-2z8 - a-2z10 + a-1z-1 - 9a-1z + 25a-1z3 - 37a-1z5 + 24a-1z7 - 5a-1z9 + 10z2 - 20z4 + 8z6 + 2z8 - z10 - 5az + 19az3 - 24az5 + 12az7 - 2az9 + 6a2z2 - 11a2z4 + 6a2z6 - a2z8

Khovanov Homology:
trqj r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6
j = 16           1
j = 14          2 
j = 12         31 
j = 10        42  
j = 8       53   
j = 6      55    
j = 4     44     
j = 2    46      
j = 0   23       
j = -2  14        
j = -4 12         
j = -6 1          
j = -81           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 358]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 358]]
Out[4]=   
PD[X[12, 1, 13, 2], X[14, 3, 15, 4], X[20, 10, 21, 9], X[16, 6, 17, 5], 
 
>   X[18, 8, 19, 7], X[22, 15, 11, 16], X[6, 18, 7, 17], X[8, 20, 9, 19], 
 
>   X[4, 22, 5, 21], X[2, 11, 3, 12], X[10, 13, 1, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -9, 4, -7, 5, -8, 3, -11}, 
 
>   {10, -1, 11, -2, 6, -4, 7, -5, 8, -3, 9, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(7/2)    2      3        6                     3/2      5/2      7/2
q       - ---- + ---- - ------- + 7 Sqrt[q] - 9 q    + 9 q    - 9 q    + 
           5/2    3/2   Sqrt[q]
          q      q
 
       9/2      11/2      13/2    15/2
>   7 q    - 5 q     + 3 q     - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10   2       2    4      8    10      12    20    22
1 - q    + -- + 3 q  + q  + 2 q  - q   + 2 q   - q   + q
            2
           q
In[8]:=
HOMFLYPT[Link[11, Alternating, 358]][a, z]
Out[8]=   
                                           3      3      3             5
   1       1    z    z    6 z           3 z    3 z    8 z         3   z
-(----) + --- - -- - -- + --- - 3 a z - ---- + ---- + ---- - 4 a z  - -- + 
   3      a z    5    3    a              5      3     a               5
  a  z          a    a                   a      a                     a
 
       5      5           7    7
    4 z    5 z       5   z    z
>   ---- + ---- - a z  + -- + --
      3     a             3   a
     a                   a
In[9]:=
Kauffman[Link[11, Alternating, 358]][a, z]
Out[9]=   
                                                      2    2    2      2
  -2    1      1    z    3 z   9 z               2   z    z    z    7 z
-a   + ---- + --- - -- - --- - --- - 5 a z + 10 z  + -- - -- + -- + ---- + 
        3     a z    7    3     a                     8    6    4     2
       a  z         a    a                           a    a    a     a
 
               3      3      3    3       3                        4      4
       2  2   z    4 z    2 z    z    25 z          3       4   3 z    7 z
>   6 a  z  - -- + ---- - ---- - -- + ----- + 19 a z  - 20 z  - ---- + ---- - 
               9     7      5     3     a                         8      6
              a     a      a     a                               a      a
 
       4       4                 5       5      5       5
    4 z    23 z        2  4   5 z    10 z    2 z    37 z          5      6
>   ---- - ----- - 11 a  z  - ---- + ----- + ---- - ----- - 24 a z  + 8 z  - 
      4      2                  7      5       3      a
     a      a                  a      a       a
 
       6       6       6                7      7       7
    6 z    11 z    19 z       2  6   6 z    6 z    24 z          7      8
>   ---- + ----- + ----- + 6 a  z  - ---- + ---- + ----- + 12 a z  + 2 z  - 
      6      4       2                 5      3      a
     a      a       a                 a      a
 
       8      8              9      9                   10
    5 z    2 z     2  8   3 z    5 z         9    10   z
>   ---- - ---- - a  z  - ---- - ---- - 2 a z  - z   - ---
      4      2              3     a                     2
     a      a              a                           a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                                          2
   2      4     1       1       1       2       1     2      4     3   4 q
6 q  + 4 q  + ----- + ----- + ----- + ----- + ----- + -- + ----- + - + ---- + 
               8  5    6  4    4  4    4  3    2  3    2    2  2   t    t
              q  t    q  t    q  t    q  t    q  t    t    q  t
 
       4        6        6  2      8  2      8  3      10  3      10  4
>   4 q  t + 5 q  t + 5 q  t  + 5 q  t  + 3 q  t  + 4 q   t  + 2 q   t  + 
 
       12  4    12  5      14  5    16  6
>   3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a358
L11a357
L11a357
L11a359
L11a359