© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a347
L11a347
L11a349
L11a349
L11a348
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a348

Visit L11a348's page at Knotilus!

Acknowledgement

L11a348 as Morse Link
DrawMorseLink

PD Presentation: X12,1,13,2 X10,11,1,12 X14,5,15,6 X18,9,19,10 X2,17,3,18 X16,8,17,7 X8493 X20,16,21,15 X22,13,11,14 X4,20,5,19 X6,21,7,22

Gauss Code: {{1, -5, 7, -10, 3, -11, 6, -7, 4, -2}, {2, -1, 9, -3, 8, -6, 5, -4, 10, -8, 11, -9}}

Jones Polynomial: q-15/2 - 6q-13/2 + 13q-11/2 - 20q-9/2 + 26q-7/2 - 30q-5/2 + 28q-3/2 - 25q-1/2 + 17q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 4q-20 - 2q-18 + q-16 + 3q-14 - 6q-12 + 6q-10 - q-8 + 4q-6 + 4q-4 - 4q-2 + 5 - 5q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 + 4az + 5az3 + 3az5 + az7 - a3z-1 - 8a3z - 5a3z3 + a3z5 + a3z7 + a5z-1 + 3a5z - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - 2a-2z2 + 5a-2z4 - 4a-2z6 + 2a-1z - 6a-1z3 + 10a-1z5 - 8a-1z7 - 2z2 - 5z4 + 13z6 - 11z8 + 7az - 18az3 + 11az5 + 6az7 - 10az9 + 3a2z2 - 33a2z4 + 49a2z6 - 18a2z8 - 4a2z10 - a3z-1 + 10a3z - 17a3z3 - 2a3z5 + 36a3z7 - 22a3z9 + a4 + a4z2 - 33a4z4 + 59a4z6 - 20a4z8 - 4a4z10 - a5z-1 + 3a5z - 6a5z3 + 6a5z5 + 16a5z7 - 12a5z9 - 2a6z2 - 10a6z4 + 26a6z6 - 13a6z8 - 2a7z + 8a7z5 - 6a7z7 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        113  
j = 0       146   
j = -2      1512    
j = -4     1513     
j = -6    1115      
j = -8   915       
j = -10  512        
j = -12 18         
j = -14 5          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 348]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 348]]
Out[4]=   
PD[X[12, 1, 13, 2], X[10, 11, 1, 12], X[14, 5, 15, 6], X[18, 9, 19, 10], 
 
>   X[2, 17, 3, 18], X[16, 8, 17, 7], X[8, 4, 9, 3], X[20, 16, 21, 15], 
 
>   X[22, 13, 11, 14], X[4, 20, 5, 19], X[6, 21, 7, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 7, -10, 3, -11, 6, -7, 4, -2}, 
 
>   {2, -1, 9, -3, 8, -6, 5, -4, 10, -8, 11, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     6      13      20     26     30     28      25
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 17 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    4     2     -16    3     6     6     -8   4    4    4       2
5 - q    + --- - --- + q    + --- - --- + --- - q   + -- + -- - -- - 5 q  + 
            20    18           14    12    10          6    4    2
           q     q            q     q     q           q    q    q
 
       6      8    10
>   2 q  - 2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 348]][a, z]
Out[8]=   
   3     5                                    3                       5
  a     a    z              3        5     2 z         3      3  3   z
-(--) + -- - - + 4 a z - 8 a  z + 3 a  z - ---- + 5 a z  - 5 a  z  - -- + 
  z     z    a                              a                        a
 
         5    3  5    5  5      7    3  7
>   3 a z  + a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 348]][a, z]
Out[9]=   
      3    5                                                       2
 4   a    a    2 z               3        5        7        2   2 z
a  - -- - -- + --- + 7 a z + 10 a  z + 3 a  z - 2 a  z - 2 z  - ---- + 
     z    z     a                                                 2
                                                                 a
 
                                 3      3
       2  2    4  2      6  2   z    6 z          3       3  3      5  3
>   3 a  z  + a  z  - 2 a  z  + -- - ---- - 18 a z  - 17 a  z  - 6 a  z  - 
                                 3    a
                                a
 
              4                                     5       5
       4   5 z        2  4       4  4       6  4   z    10 z          5
>   5 z  + ---- - 33 a  z  - 33 a  z  - 10 a  z  - -- + ----- + 11 a z  - 
             2                                      3     a
            a                                      a
 
                                             6
       3  5      5  5      7  5       6   4 z        2  6       4  6
>   2 a  z  + 6 a  z  + 8 a  z  + 13 z  - ---- + 49 a  z  + 59 a  z  + 
                                            2
                                           a
 
                          7
        6  6    8  6   8 z         7       3  7       5  7      7  7       8
>   26 a  z  - a  z  - ---- + 6 a z  + 36 a  z  + 16 a  z  - 6 a  z  - 11 z  - 
                        a
 
        2  8       4  8       6  8         9       3  9       5  9      2  10
>   18 a  z  - 20 a  z  - 13 a  z  - 10 a z  - 22 a  z  - 12 a  z  - 4 a  z   - 
 
       4  10
>   4 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     12     1        5        1        8        5        12       9      15
14 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     11      15      15      13     15              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 11 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a348
L11a347
L11a347
L11a349
L11a349