© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a329
L11a329
L11a331
L11a331
L11a330
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a330

Visit L11a330's page at Knotilus!

Acknowledgement

L11a330 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X20,5,21,6 X6,9,7,10 X18,12,19,11 X16,8,17,7 X4,14,5,13 X22,16,9,15 X8,18,1,17 X2,19,3,20 X14,22,15,21

Gauss Code: {{1, -10, 2, -7, 3, -4, 6, -9}, {4, -1, 5, -2, 7, -11, 8, -6, 9, -5, 10, -3, 11, -8}}

Jones Polynomial: - q-5/2 + 4q-3/2 - 9q-1/2 + 13q1/2 - 19q3/2 + 21q5/2 - 22q7/2 + 19q9/2 - 14q11/2 + 9q13/2 - 4q15/2 + q17/2

A2 (sl(3)) Invariant: q-6 - 2q-4 + 3q-2 - 1 + 3q2 + 4q4 - q6 + 7q8 - 4q10 + 3q12 - 2q14 - 2q16 + 2q18 - 3q20 + 2q22 - q24

HOMFLY-PT Polynomial: a-5z-1 + 3a-5z + 5a-5z3 + 4a-5z5 + a-5z7 - 3a-3z-1 - 7a-3z - 13a-3z3 - 13a-3z5 - 6a-3z7 - a-3z9 + 2a-1z-1 + 4a-1z + 5a-1z3 + 4a-1z5 + a-1z7

Kauffman Polynomial: - a-10z4 + a-9z3 - 4a-9z5 - 3a-8z2 + 8a-8z4 - 9a-8z6 + a-7z - 8a-7z3 + 17a-7z5 - 13a-7z7 - a-6 + 3a-6z2 - 6a-6z4 + 18a-6z6 - 13a-6z8 + a-5z-1 - 2a-5z - 3a-5z3 + 9a-5z5 + 8a-5z7 - 9a-5z9 - 3a-4 + 13a-4z2 - 36a-4z4 + 45a-4z6 - 12a-4z8 - 3a-4z10 + 3a-3z-1 - 7a-3z + 10a-3z3 - 28a-3z5 + 40a-3z7 - 15a-3z9 - 3a-2 + 10a-2z2 - 33a-2z4 + 31a-2z6 - 3a-2z8 - 3a-2z10 + 2a-1z-1 - 3a-1z + a-1z3 - 13a-1z5 + 18a-1z7 - 6a-1z9 + 3z2 - 12z4 + 13z6 - 4z8 + az - 3az3 + 3az5 - az7

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 18           1
j = 16          3 
j = 14         61 
j = 12        83  
j = 10       116   
j = 8      118    
j = 6     1011     
j = 4    911      
j = 2   612       
j = 0  37        
j = -2 16         
j = -4 3          
j = -61           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 330]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 330]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[20, 5, 21, 6], X[6, 9, 7, 10], 
 
>   X[18, 12, 19, 11], X[16, 8, 17, 7], X[4, 14, 5, 13], X[22, 16, 9, 15], 
 
>   X[8, 18, 1, 17], X[2, 19, 3, 20], X[14, 22, 15, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -7, 3, -4, 6, -9}, 
 
>   {4, -1, 5, -2, 7, -11, 8, -6, 9, -5, 10, -3, 11, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(5/2)    4        9                       3/2       5/2       7/2
-q       + ---- - ------- + 13 Sqrt[q] - 19 q    + 21 q    - 22 q    + 
            3/2   Sqrt[q]
           q
 
        9/2       11/2      13/2      15/2    17/2
>   19 q    - 14 q     + 9 q     - 4 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -6   2    3       2      4    6      8      10      12      14      16
-1 + q   - -- + -- + 3 q  + 4 q  - q  + 7 q  - 4 q   + 3 q   - 2 q   - 2 q   + 
            4    2
           q    q
 
       18      20      22    24
>   2 q   - 3 q   + 2 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 330]][a, z]
Out[8]=   
                                         3       3      3      5       5
 1      3      2    3 z   7 z   4 z   5 z    13 z    5 z    4 z    13 z
---- - ---- + --- + --- - --- + --- + ---- - ----- + ---- + ---- - ----- + 
 5      3     a z    5     3     a      5      3      a       5      3
a  z   a  z         a     a            a      a              a      a
 
       5    7      7    7    9
    4 z    z    6 z    z    z
>   ---- + -- - ---- + -- - --
     a      5     3    a     3
           a     a          a
In[9]:=
Kauffman[Link[11, Alternating, 330]][a, z]
Out[9]=   
                                                                            2
  -6   3    3     1      3      2    z    2 z   7 z   3 z            2   3 z
-a   - -- - -- + ---- + ---- + --- + -- - --- - --- - --- + a z + 3 z  - ---- + 
        4    2    5      3     a z    7    5     3     a                   8
       a    a    a  z   a  z         a    a     a                         a
 
       2       2       2    3      3      3       3    3
    3 z    13 z    10 z    z    8 z    3 z    10 z    z         3       4
>   ---- + ----- + ----- + -- - ---- - ---- + ----- + -- - 3 a z  - 12 z  - 
      6      4       2      9     7      5      3     a
     a      a       a      a     a      a      a
 
     4       4      4       4       4      5       5      5       5       5
    z     8 z    6 z    36 z    33 z    4 z    17 z    9 z    28 z    13 z
>   --- + ---- - ---- - ----- - ----- - ---- + ----- + ---- - ----- - ----- + 
     10     8      6      4       2       9      7       5      3       a
    a      a      a      a       a       a      a       a      a
 
                        6       6       6       6       7      7       7
         5       6   9 z    18 z    45 z    31 z    13 z    8 z    40 z
>   3 a z  + 13 z  - ---- + ----- + ----- + ----- - ----- + ---- + ----- + 
                       8      6       4       2       7       5      3
                      a      a       a       a       a       a      a
 
        7                     8       8      8      9       9      9      10
    18 z       7      8   13 z    12 z    3 z    9 z    15 z    6 z    3 z
>   ----- - a z  - 4 z  - ----- - ----- - ---- - ---- - ----- - ---- - ----- - 
      a                     6       4       2      5      3      a       4
                           a       a       a      a      a              a
 
       10
    3 z
>   -----
      2
     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                                                           2
    2      4     1       3       1     3      6     7   6 q        4
12 q  + 9 q  + ----- + ----- + ----- + -- + ----- + - + ---- + 11 q  t + 
                6  4    4  3    2  3    2    2  2   t    t
               q  t    q  t    q  t    t    q  t
 
        6         6  2       8  2      8  3       10  3      10  4      12  4
>   10 q  t + 11 q  t  + 11 q  t  + 8 q  t  + 11 q   t  + 6 q   t  + 8 q   t  + 
 
       12  5      14  5    14  6      16  6    18  7
>   3 q   t  + 6 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a330
L11a329
L11a329
L11a331
L11a331