© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a327
L11a327
L11a329
L11a329
L11a328
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a328

Visit L11a328's page at Knotilus!

Acknowledgement

L11a328 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X20,5,21,6 X18,9,19,10 X22,19,9,20 X16,12,17,11 X6,21,7,22 X14,8,15,7 X4,14,5,13 X8,16,1,15 X2,17,3,18

Gauss Code: {{1, -11, 2, -9, 3, -7, 8, -10}, {4, -1, 6, -2, 9, -8, 10, -6, 11, -4, 5, -3, 7, -5}}

Jones Polynomial: - q-11/2 + 4q-9/2 - 8q-7/2 + 12q-5/2 - 16q-3/2 + 17q-1/2 - 18q1/2 + 15q3/2 - 11q5/2 + 6q7/2 - 3q9/2 + q11/2

A2 (sl(3)) Invariant: q-16 - 2q-14 + q-12 - q-8 + 4q-6 - 2q-4 + 3q-2 + 1 + 4q4 - 2q6 + 3q8 - q12 + q14 - q16

HOMFLY-PT Polynomial: 2a-3z + 3a-3z3 + a-3z5 - a-1z-1 - 4a-1z - 6a-1z3 - 4a-1z5 - a-1z7 + az-1 + 2az - az3 - 3az5 - az7 + 2a3z3 + a3z5

Kauffman Polynomial: a-6z2 - a-6z4 - a-5z + 3a-5z3 - 3a-5z5 - a-4z2 + 4a-4z4 - 5a-4z6 + a-3z - 4a-3z3 + 8a-3z5 - 7a-3z7 + a-2z2 - 8a-2z4 + 13a-2z6 - 8a-2z8 - a-1z-1 + 6a-1z - 15a-1z3 + 10a-1z5 + 6a-1z7 - 6a-1z9 + 1 + 9z2 - 37z4 + 41z6 - 10z8 - 2z10 - az-1 + 6az - 11az3 - 9az5 + 28az7 - 11az9 + 10a2z2 - 38a2z4 + 37a2z6 - 6a2z8 - 2a2z10 + 3a3z - 6a3z3 - 5a3z5 + 14a3z7 - 5a3z9 + 4a4z2 - 14a4z4 + 14a4z6 - 4a4z8 + a5z - 3a5z3 + 3a5z5 - a5z7

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 12           1
j = 10          2 
j = 8         41 
j = 6        72  
j = 4       84   
j = 2      107    
j = 0     910     
j = -2    78      
j = -4   59       
j = -6  37        
j = -8 15         
j = -10 3          
j = -121           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 328]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 328]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[20, 5, 21, 6], X[18, 9, 19, 10], 
 
>   X[22, 19, 9, 20], X[16, 12, 17, 11], X[6, 21, 7, 22], X[14, 8, 15, 7], 
 
>   X[4, 14, 5, 13], X[8, 16, 1, 15], X[2, 17, 3, 18]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 2, -9, 3, -7, 8, -10}, 
 
>   {4, -1, 6, -2, 9, -8, 10, -6, 11, -4, 5, -3, 7, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(11/2)    4      8      12     16      17                       3/2
-q        + ---- - ---- + ---- - ---- + ------- - 18 Sqrt[q] + 15 q    - 
             9/2    7/2    5/2    3/2   Sqrt[q]
            q      q      q      q
 
        5/2      7/2      9/2    11/2
>   11 q    + 6 q    - 3 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -16    2     -12    -8   4    2    3       4      6      8    12    14
1 + q    - --- + q    - q   + -- - -- + -- + 4 q  - 2 q  + 3 q  - q   + q   - 
            14                 6    4    2
           q                  q    q    q
 
     16
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 328]][a, z]
Out[8]=   
                                    3      3                     5      5
   1     a   2 z   4 z           3 z    6 z       3      3  3   z    4 z
-(---) + - + --- - --- + 2 a z + ---- - ---- - a z  + 2 a  z  + -- - ---- - 
  a z    z    3     a              3     a                       3    a
             a                    a                             a
 
                      7
         5    3  5   z       7
>   3 a z  + a  z  - -- - a z
                     a
In[9]:=
Kauffman[Link[11, Alternating, 328]][a, z]
Out[9]=   
                                                              2    2    2
     1    a   z    z    6 z              3      5        2   z    z    z
1 - --- - - - -- + -- + --- + 6 a z + 3 a  z + a  z + 9 z  + -- - -- + -- + 
    a z   z    5    3    a                                    6    4    2
              a    a                                         a    a    a
 
                            3      3       3
        2  2      4  2   3 z    4 z    15 z          3      3  3      5  3
>   10 a  z  + 4 a  z  + ---- - ---- - ----- - 11 a z  - 6 a  z  - 3 a  z  - 
                           5      3      a
                          a      a
 
             4      4      4                            5      5       5
        4   z    4 z    8 z        2  4       4  4   3 z    8 z    10 z
>   37 z  - -- + ---- - ---- - 38 a  z  - 14 a  z  - ---- + ---- + ----- - 
             6     4      2                            5      3      a
            a     a      a                            a      a
 
                                            6       6
         5      3  5      5  5       6   5 z    13 z        2  6       4  6
>   9 a z  - 5 a  z  + 3 a  z  + 41 z  - ---- + ----- + 37 a  z  + 14 a  z  - 
                                           4      2
                                          a      a
 
       7      7                                           8
    7 z    6 z          7       3  7    5  7       8   8 z       2  8
>   ---- + ---- + 28 a z  + 14 a  z  - a  z  - 10 z  - ---- - 6 a  z  - 
      3     a                                            2
     a                                                  a
 
                 9
       4  8   6 z          9      3  9      10      2  10
>   4 a  z  - ---- - 11 a z  - 5 a  z  - 2 z   - 2 a  z
               a
In[10]:=
Kh[L][q, t]
Out[10]=   
         2     1        3        1       5       3       7       5       9
10 + 10 q  + ------ + ------ + ----- + ----- + ----- + ----- + ----- + ----- + 
              12  6    10  5    8  5    8  4    6  4    6  3    4  3    4  2
             q   t    q   t    q  t    q  t    q  t    q  t    q  t    q  t
 
      7     9    8        2        4        4  2      6  2      6  3
>   ----- + - + ---- + 7 q  t + 8 q  t + 4 q  t  + 7 q  t  + 2 q  t  + 
     2  2   t    2
    q  t        q  t
 
       8  3    8  4      10  4    12  5
>   4 q  t  + q  t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a328
L11a327
L11a327
L11a329
L11a329