© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a323
L11a323
L11a325
L11a325
L11a324
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a324

Visit L11a324's page at Knotilus!

Acknowledgement

L11a324 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X16,10,17,9 X6,13,7,14 X14,7,15,8 X8,15,1,16 X22,18,9,17 X4,20,5,19 X20,6,21,5 X18,22,19,21

Gauss Code: {{1, -2, 3, -9, 10, -5, 6, -7}, {4, -1, 2, -3, 5, -6, 7, -4, 8, -11, 9, -10, 11, -8}}

Jones Polynomial: - q-15/2 + 2q-13/2 - 4q-11/2 + 6q-9/2 - 8q-7/2 + 9q-5/2 - 9q-3/2 + 7q-1/2 - 7q1/2 + 4q3/2 - 2q5/2 + q7/2

A2 (sl(3)) Invariant: q-22 + q-18 + q-16 + 2q-12 - q-10 + q-8 + 3q-2 + 1 + 2q2 - q6 - q10

HOMFLY-PT Polynomial: 4a-1z + 4a-1z3 + a-1z5 - 5az - 8az3 - 5az5 - az7 - a3z-1 - 5a3z - 8a3z3 - 5a3z5 - a3z7 + a5z-1 + 4a5z + 4a5z3 + a5z5

Kauffman Polynomial: 8a-2z2 - 12a-2z4 + 6a-2z6 - a-2z8 - 5a-1z + 15a-1z3 - 20a-1z5 + 11a-1z7 - 2a-1z9 + 11z2 - 24z4 + 12z6 + z8 - z10 - 4az + 8az3 - 23az5 + 21az7 - 5az9 + 9a2z2 - 29a2z4 + 24a2z6 - 3a2z8 - a2z10 - a3z-1 + 8a3z - 18a3z3 + 11a3z5 + 5a3z7 - 3a3z9 + a4 + 3a4z2 - 10a4z4 + 14a4z6 - 5a4z8 - a5z-1 + 5a5z - 8a5z3 + 11a5z5 - 5a5z7 - 2a6z2 + 5a6z4 - 4a6z6 - a7z + 2a7z3 - 3a7z5 + a8z2 - 2a8z4 + a9z - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8           1
j = 6          1 
j = 4         31 
j = 2        41  
j = 0       33   
j = -2      64    
j = -4     44     
j = -6    45      
j = -8   24       
j = -10  24        
j = -12 13         
j = -14 1          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 324]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 324]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[16, 10, 17, 9], 
 
>   X[6, 13, 7, 14], X[14, 7, 15, 8], X[8, 15, 1, 16], X[22, 18, 9, 17], 
 
>   X[4, 20, 5, 19], X[20, 6, 21, 5], X[18, 22, 19, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -9, 10, -5, 6, -7}, 
 
>   {4, -1, 2, -3, 5, -6, 7, -4, 8, -11, 9, -10, 11, -8}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)     2       4      6      8      9      9        7
-q        + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 7 Sqrt[q] + 
             13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q      q      q      q
 
       3/2      5/2    7/2
>   4 q    - 2 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    -18    -16    2     -10    -8   3       2    6    10
1 + q    + q    + q    + --- - q    + q   + -- + 2 q  - q  - q
                          12                 2
                         q                  q
In[8]:=
HOMFLYPT[Link[11, Alternating, 324]][a, z]
Out[8]=   
   3     5                                      3
  a     a    4 z              3        5     4 z         3      3  3
-(--) + -- + --- - 5 a z - 5 a  z + 4 a  z + ---- - 8 a z  - 8 a  z  + 
  z     z     a                               a
 
               5
       5  3   z         5      3  5    5  5      7    3  7
>   4 a  z  + -- - 5 a z  - 5 a  z  + a  z  - a z  - a  z
              a
In[9]:=
Kauffman[Link[11, Alternating, 324]][a, z]
Out[9]=   
      3    5                                                            2
 4   a    a    5 z              3        5      7      9         2   8 z
a  - -- - -- - --- - 4 a z + 8 a  z + 5 a  z - a  z + a  z + 11 z  + ---- + 
     z    z     a                                                      2
                                                                      a
 
                                              3
       2  2      4  2      6  2    8  2   15 z         3       3  3      5  3
>   9 a  z  + 3 a  z  - 2 a  z  + a  z  + ----- + 8 a z  - 18 a  z  - 8 a  z  + 
                                            a
 
                                  4
       7  3    9  3       4   12 z        2  4       4  4      6  4      8  4
>   2 a  z  - a  z  - 24 z  - ----- - 29 a  z  - 10 a  z  + 5 a  z  - 2 a  z  - 
                                2
                               a
 
        5                                                        6
    20 z          5       3  5       5  5      7  5       6   6 z        2  6
>   ----- - 23 a z  + 11 a  z  + 11 a  z  - 3 a  z  + 12 z  + ---- + 24 a  z  + 
      a                                                         2
                                                               a
 
                             7                                       8
        4  6      6  6   11 z          7      3  7      5  7    8   z
>   14 a  z  - 4 a  z  + ----- + 21 a z  + 5 a  z  - 5 a  z  + z  - -- - 
                           a                                         2
                                                                    a
 
                           9
       2  8      4  8   2 z         9      3  9    10    2  10
>   3 a  z  - 5 a  z  - ---- - 5 a z  - 3 a  z  - z   - a  z
                         a
In[10]:=
Kh[L][q, t]
Out[10]=   
4    6      1        1        1        3        2        4        2       4
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    16  6    14  5    12  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      4      5      4           4 t      2      2  2    2  3      4  3
>   ----- + ---- + ---- + 3 t + --- + 3 t  + 4 q  t  + q  t  + 3 q  t  + 
     6  2    6      4            2
    q  t    q  t   q  t         q
 
     4  4    6  4    8  5
>   q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a324
L11a323
L11a323
L11a325
L11a325