© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a307
L11a307
L11a309
L11a309
L11a308
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a308

Visit L11a308's page at Knotilus!

Acknowledgement

L11a308 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X6,9,7,10 X20,7,21,8 X8,19,1,20 X18,13,19,14 X16,6,17,5 X4,18,5,17 X22,15,9,16 X14,21,15,22

Gauss Code: {{1, -2, 3, -9, 8, -4, 5, -6}, {4, -1, 2, -3, 7, -11, 10, -8, 9, -7, 6, -5, 11, -10}}

Jones Polynomial: q-23/2 - 3q-21/2 + 7q-19/2 - 12q-17/2 + 15q-15/2 - 17q-13/2 + 17q-11/2 - 15q-9/2 + 10q-7/2 - 7q-5/2 + 3q-3/2 - q-1/2

A2 (sl(3)) Invariant: - q-34 + q-32 - 2q-30 - q-28 + 2q-26 - 2q-24 + 4q-22 - q-20 + q-18 + 3q-16 - q-14 + 5q-12 - q-10 + q-8 + q-6 - q-4 + q-2

HOMFLY-PT Polynomial: - 2a3z - 3a3z3 - a3z5 - 2a5z-1 - 5a5z + 3a5z5 + a5z7 + 3a7z-1 + 8a7z + 7a7z3 + 4a7z5 + a7z7 - a9z-1 - 3a9z - 3a9z3 - a9z5

Kauffman Polynomial: 2a3z - 5a3z3 + 4a3z5 - a3z7 + 2a4z2 - 11a4z4 + 11a4z6 - 3a4z8 + 2a5z-1 - 7a5z + 7a5z3 - 12a5z5 + 13a5z7 - 4a5z9 - 3a6 + 11a6z2 - 21a6z4 + 18a6z6 - a6z8 - 2a6z10 + 3a7z-1 - 12a7z + 23a7z3 - 31a7z5 + 30a7z7 - 10a7z9 - 3a8 + 17a8z2 - 29a8z4 + 29a8z6 - 7a8z8 - 2a8z10 + a9z-1 - 4a9z3 + 3a9z5 + 7a9z7 - 6a9z9 - a10 + 4a10z2 - 12a10z4 + 16a10z6 - 9a10z8 + 3a11z - 13a11z3 + 15a11z5 - 9a11z7 - 3a12z2 + 6a12z4 - 6a12z6 + 2a13z3 - 3a13z5 + a14z2 - a14z4

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 0           1
j = -2          2 
j = -4         51 
j = -6        63  
j = -8       94   
j = -10      86    
j = -12     99     
j = -14    79      
j = -16   58       
j = -18  27        
j = -20 15         
j = -22 2          
j = -241           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 308]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 308]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[6, 9, 7, 10], 
 
>   X[20, 7, 21, 8], X[8, 19, 1, 20], X[18, 13, 19, 14], X[16, 6, 17, 5], 
 
>   X[4, 18, 5, 17], X[22, 15, 9, 16], X[14, 21, 15, 22]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -9, 8, -4, 5, -6}, 
 
>   {4, -1, 2, -3, 7, -11, 10, -8, 9, -7, 6, -5, 11, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(23/2)     3       7      12      15      17      17      15     10     7
q        - ----- + ----- - ----- + ----- - ----- + ----- - ---- + ---- - ---- + 
            21/2    19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2
           q       q       q       q       q       q       q      q      q
 
     3        1
>   ---- - -------
     3/2   Sqrt[q]
    q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -34    -32    2     -28    2     2     4     -20    -18    3     -14    5
-q    + q    - --- - q    + --- - --- + --- - q    + q    + --- - q    + --- - 
                30           26    24    22                  16           12
               q            q     q     q                   q            q
 
     -10    -8    -6    -4    -2
>   q    + q   + q   - q   + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 308]][a, z]
Out[8]=   
    5      7    9
-2 a    3 a    a       3        5        7        9        3  3      7  3
----- + ---- - -- - 2 a  z - 5 a  z + 8 a  z - 3 a  z - 3 a  z  + 7 a  z  - 
  z      z     z
 
       9  3    3  5      5  5      7  5    9  5    5  7    7  7
>   3 a  z  - a  z  + 3 a  z  + 4 a  z  - a  z  + a  z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 308]][a, z]
Out[9]=   
                        5      7    9
    6      8    10   2 a    3 a    a       3        5         7        11
-3 a  - 3 a  - a   + ---- + ---- + -- + 2 a  z - 7 a  z - 12 a  z + 3 a   z + 
                      z      z     z
 
       4  2       6  2       8  2      10  2      12  2    14  2      3  3
>   2 a  z  + 11 a  z  + 17 a  z  + 4 a   z  - 3 a   z  + a   z  - 5 a  z  + 
 
       5  3       7  3      9  3       11  3      13  3       4  4       6  4
>   7 a  z  + 23 a  z  - 4 a  z  - 13 a   z  + 2 a   z  - 11 a  z  - 21 a  z  - 
 
        8  4       10  4      12  4    14  4      3  5       5  5       7  5
>   29 a  z  - 12 a   z  + 6 a   z  - a   z  + 4 a  z  - 12 a  z  - 31 a  z  + 
 
       9  5       11  5      13  5       4  6       6  6       8  6
>   3 a  z  + 15 a   z  - 3 a   z  + 11 a  z  + 18 a  z  + 29 a  z  + 
 
        10  6      12  6    3  7       5  7       7  7      9  7      11  7
>   16 a   z  - 6 a   z  - a  z  + 13 a  z  + 30 a  z  + 7 a  z  - 9 a   z  - 
 
       4  8    6  8      8  8      10  8      5  9       7  9      9  9
>   3 a  z  - a  z  - 7 a  z  - 9 a   z  - 4 a  z  - 10 a  z  - 6 a  z  - 
 
       6  10      8  10
>   2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    5      1        2        1        5        2        7        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 6    4    24  9    22  8    20  8    20  7    18  7    18  6    16  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      8        7        9        9        9        8        6        9
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ----- + 
     16  5    14  5    14  4    12  4    12  3    10  3    10  2    8  2
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q  t
 
     4      6     t    2 t    2
>   ---- + ---- + -- + --- + t
     8      6      4    2
    q  t   q  t   q    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a308
L11a307
L11a307
L11a309
L11a309