© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a301
L11a301
L11a303
L11a303
L11a302
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a302

Visit L11a302's page at Knotilus!

Acknowledgement

L11a302 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X16,6,17,5 X22,14,9,13 X20,16,21,15 X14,22,15,21 X18,8,19,7 X6,18,7,17 X8,20,1,19

Gauss Code: {{1, -2, 3, -4, 5, -10, 9, -11}, {4, -1, 2, -3, 6, -8, 7, -5, 10, -9, 11, -7, 8, -6}}

Jones Polynomial: - q-7/2 + 2q-5/2 - 4q-3/2 + 6q-1/2 - 9q1/2 + 10q3/2 - 10q5/2 + 8q7/2 - 7q9/2 + 4q11/2 - 2q13/2 + q15/2

A2 (sl(3)) Invariant: q-10 + q-6 + q-4 + 3 - q2 + q4 + 3q10 + 2q14 - q18 - q22

HOMFLY-PT Polynomial: 4a-5z + 4a-5z3 + a-5z5 - 4a-3z - 8a-3z3 - 5a-3z5 - a-3z7 - a-1z-1 - 4a-1z - 8a-1z3 - 5a-1z5 - a-1z7 + az-1 + 4az + 4az3 + az5

Kauffman Polynomial: - 4a-8z2 + 4a-8z4 - a-8z6 + a-7z - 6a-7z3 + 7a-7z5 - 2a-7z7 + a-6z2 - 2a-6z4 + 5a-6z6 - 2a-6z8 - 5a-5z + 18a-5z3 - 14a-5z5 + 7a-5z7 - 2a-5z9 + 2a-4z2 + 2a-4z4 - 3a-4z6 + 2a-4z8 - a-4z10 - 6a-3z + 23a-3z3 - 30a-3z5 + 16a-3z7 - 4a-3z9 - 7a-2z4 + 2a-2z6 + a-2z8 - a-2z10 - a-1z-1 + 6a-1z - 13a-1z3 + a-1z5 + 4a-1z7 - 2a-1z9 + 1 + 2z2 - 10z4 + 9z6 - 3z8 - az-1 + 5az - 9az3 + 9az5 - 3az7 - a2z2 + 5a2z4 - 2a2z6 - a3z + 3a3z3 - a3z5

Khovanov Homology:
trqj r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7
j = 16           1
j = 14          1 
j = 12         31 
j = 10        41  
j = 8       43   
j = 6      64    
j = 4     44     
j = 2    56      
j = 0   36       
j = -2  13        
j = -4 13         
j = -6 1          
j = -81           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 302]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 302]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[4, 9, 5, 10], 
 
>   X[16, 6, 17, 5], X[22, 14, 9, 13], X[20, 16, 21, 15], X[14, 22, 15, 21], 
 
>   X[18, 8, 19, 7], X[6, 18, 7, 17], X[8, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -4, 5, -10, 9, -11}, 
 
>   {4, -1, 2, -3, 6, -8, 7, -5, 10, -9, 11, -7, 8, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(7/2)    2      4        6                      3/2       5/2      7/2
-q       + ---- - ---- + ------- - 9 Sqrt[q] + 10 q    - 10 q    + 8 q    - 
            5/2    3/2   Sqrt[q]
           q      q
 
       9/2      11/2      13/2    15/2
>   7 q    + 4 q     - 2 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -10    -6    -4    2    4      10      14    18    22
3 + q    + q   + q   - q  + q  + 3 q   + 2 q   - q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 302]][a, z]
Out[8]=   
                                          3      3      3             5
   1     a   4 z   4 z   4 z           4 z    8 z    8 z         3   z
-(---) + - + --- - --- - --- + 4 a z + ---- - ---- - ---- + 4 a z  + -- - 
  a z    z    5     3     a              5      3     a               5
             a     a                    a      a                     a
 
       5      5           7    7
    5 z    5 z       5   z    z
>   ---- - ---- + a z  - -- - --
      3     a             3   a
     a                   a
In[9]:=
Kauffman[Link[11, Alternating, 302]][a, z]
Out[9]=   
                                                              2    2      2
     1    a   z    5 z   6 z   6 z            3        2   4 z    z    2 z
1 - --- - - + -- - --- - --- + --- + 5 a z - a  z + 2 z  - ---- + -- + ---- - 
    a z   z    7    5     3     a                            8     6     4
              a    a     a                                  a     a     a
 
               3       3       3       3                                 4
     2  2   6 z    18 z    23 z    13 z         3      3  3       4   4 z
>   a  z  - ---- + ----- + ----- - ----- - 9 a z  + 3 a  z  - 10 z  + ---- - 
              7      5       3       a                                  8
             a      a       a                                          a
 
       4      4      4                5       5       5    5
    2 z    2 z    7 z       2  4   7 z    14 z    30 z    z         5    3  5
>   ---- + ---- - ---- + 5 a  z  + ---- - ----- - ----- + -- + 9 a z  - a  z  + 
      6      4      2                7      5       3     a
     a      a      a                a      a       a
 
            6      6      6      6                7      7       7      7
       6   z    5 z    3 z    2 z       2  6   2 z    7 z    16 z    4 z
>   9 z  - -- + ---- - ---- + ---- - 2 a  z  - ---- + ---- + ----- + ---- - 
            8     6      4      2                7      5      3      a
           a     a      a      a                a      a      a
 
                       8      8    8      9      9      9    10    10
         7      8   2 z    2 z    z    2 z    4 z    2 z    z     z
>   3 a z  - 3 z  - ---- + ---- + -- - ---- - ---- - ---- - --- - ---
                      6      4     2     5      3     a      4     2
                     a      a     a     a      a            a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
       2     1       1       1       3       1     3    3        2        4
6 + 5 q  + ----- + ----- + ----- + ----- + ----- + - + ---- + 6 q  t + 4 q  t + 
            8  4    6  3    4  3    4  2    2  2   t    2
           q  t    q  t    q  t    q  t    q  t        q  t
 
       4  2      6  2      6  3      8  3      8  4      10  4    10  5
>   4 q  t  + 6 q  t  + 4 q  t  + 4 q  t  + 3 q  t  + 4 q   t  + q   t  + 
 
       12  5    12  6    14  6    16  7
>   3 q   t  + q   t  + q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a302
L11a301
L11a301
L11a303
L11a303