© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a298
L11a298
L11a300
L11a300
L11a299
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a299

Visit L11a299's page at Knotilus!

Acknowledgement

L11a299 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X22,12,9,11 X16,6,17,5 X20,16,21,15 X14,22,15,21 X18,8,19,7 X2,9,3,10 X4,14,5,13 X6,18,7,17 X8,20,1,19

Gauss Code: {{1, -8, 2, -9, 4, -10, 7, -11}, {8, -1, 3, -2, 9, -6, 5, -4, 10, -7, 11, -5, 6, -3}}

Jones Polynomial: - q1/2 + 2q3/2 - 5q5/2 + 7q7/2 - 11q9/2 + 13q11/2 - 13q13/2 + 12q15/2 - 10q17/2 + 6q19/2 - 3q21/2 + q23/2

A2 (sl(3)) Invariant: q2 + q6 + 2q8 + 4q12 - q14 + q16 - 2q20 + 3q22 - q24 + 2q26 - q30 + q32 - q34

HOMFLY-PT Polynomial: 2a-9z + 3a-9z3 + a-9z5 - 3a-7z - 5a-7z3 - 4a-7z5 - a-7z7 - a-5z-1 - a-5z - 4a-5z3 - 4a-5z5 - a-5z7 + a-3z-1 + 4a-3z + 4a-3z3 + a-3z5

Kauffman Polynomial: a-14z2 - a-14z4 - a-13z + 3a-13z3 - 3a-13z5 - 2a-12z2 + 5a-12z4 - 5a-12z6 - a-11z - 3a-11z3 + 7a-11z5 - 6a-11z7 - a-10z4 + 5a-10z6 - 5a-10z8 - a-9z + a-9z3 + 3a-9z5 + a-9z7 - 3a-9z9 + 5a-8z2 - 8a-8z4 + 12a-8z6 - 4a-8z8 - a-8z10 - 2a-7z + 6a-7z3 - 10a-7z5 + 13a-7z7 - 5a-7z9 + 2a-6z2 - 9a-6z4 + 10a-6z6 - a-6z8 - a-6z10 - a-5z-1 + 4a-5z - 9a-5z3 + 2a-5z5 + 5a-5z7 - 2a-5z9 + a-4 - 8a-4z4 + 8a-4z6 - 2a-4z8 - a-3z-1 + 5a-3z - 8a-3z3 + 5a-3z5 - a-3z7

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 24           1
j = 22          2 
j = 20         41 
j = 18        62  
j = 16       64   
j = 14      76    
j = 12     77     
j = 10    46      
j = 8   37       
j = 6  24        
j = 4 14         
j = 2 1          
j = 01           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 299]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 299]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[22, 12, 9, 11], X[16, 6, 17, 5], 
 
>   X[20, 16, 21, 15], X[14, 22, 15, 21], X[18, 8, 19, 7], X[2, 9, 3, 10], 
 
>   X[4, 14, 5, 13], X[6, 18, 7, 17], X[8, 20, 1, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -8, 2, -9, 4, -10, 7, -11}, 
 
>   {8, -1, 3, -2, 9, -6, 5, -4, 10, -7, 11, -5, 6, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
              3/2      5/2      7/2       9/2       11/2       13/2
-Sqrt[q] + 2 q    - 5 q    + 7 q    - 11 q    + 13 q     - 13 q     + 
 
        15/2       17/2      19/2      21/2    23/2
>   12 q     - 10 q     + 6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 2    6      8      12    14    16      20      22    24      26    30    32
q  + q  + 2 q  + 4 q   - q   + q   - 2 q   + 3 q   - q   + 2 q   - q   + q   - 
 
     34
>   q
In[8]:=
HOMFLYPT[Link[11, Alternating, 299]][a, z]
Out[8]=   
                                           3      3      3      3    5      5
   1       1     2 z   3 z   z    4 z   3 z    5 z    4 z    4 z    z    4 z
-(----) + ---- + --- - --- - -- + --- + ---- - ---- - ---- + ---- + -- - ---- - 
   5       3      9     7     5    3      9      7      5      3     9     7
  a  z    a  z   a     a     a    a      a      a      a      a     a     a
 
       5    5    7    7
    4 z    z    z    z
>   ---- + -- - -- - --
      5     3    7    5
     a     a    a    a
In[9]:=
Kauffman[Link[11, Alternating, 299]][a, z]
Out[9]=   
                                                        2       2      2
 -4    1      1      z     z    z    2 z   4 z   5 z   z     2 z    5 z
a   - ---- - ---- - --- - --- - -- - --- + --- + --- + --- - ---- + ---- + 
       5      3      13    11    9    7     5     3     14    12      8
      a  z   a  z   a     a     a    a     a     a     a     a       a
 
       2      3      3    3      3      3      3    4       4    4       4
    2 z    3 z    3 z    z    6 z    9 z    8 z    z     5 z    z     8 z
>   ---- + ---- - ---- + -- + ---- - ---- - ---- - --- + ---- - --- - ---- - 
      6     13     11     9     7      5      3     14    12     10     8
     a     a      a      a     a      a      a     a     a      a      a
 
       4      4      5      5      5       5      5      5      6      6
    9 z    8 z    3 z    7 z    3 z    10 z    2 z    5 z    5 z    5 z
>   ---- - ---- - ---- + ---- + ---- - ----- + ---- + ---- - ---- + ---- + 
      6      4     13     11      9      7       5      3     12     10
     a      a     a      a       a      a       a      a     a      a
 
        6       6      6      7    7       7      7    7      8      8    8
    12 z    10 z    8 z    6 z    z    13 z    5 z    z    5 z    4 z    z
>   ----- + ----- + ---- - ---- + -- + ----- + ---- - -- - ---- - ---- - -- - 
      8       6       4     11     9     7       5     3    10      8     6
     a       a       a     a      a     a       a     a    a       a     a
 
       8      9      9      9    10    10
    2 z    3 z    5 z    2 z    z     z
>   ---- - ---- - ---- - ---- - --- - ---
      4      9      7      5     8     6
     a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                     2    4
   4      6    -2   q    q       6        8        8  2      10  2      10  3
4 q  + 2 q  + t   + -- + -- + 4 q  t + 3 q  t + 7 q  t  + 4 q   t  + 6 q   t  + 
                    t    t
 
       12  3      12  4      14  4      14  5      16  5      16  6
>   7 q   t  + 7 q   t  + 7 q   t  + 6 q   t  + 6 q   t  + 4 q   t  + 
 
       18  6      18  7      20  7    20  8      22  8    24  9
>   6 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a299
L11a298
L11a298
L11a300
L11a300