© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a289
L11a289
L11a291
L11a291
L11a290
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a290

Visit L11a290's page at Knotilus!

Acknowledgement

L11a290 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X20,13,21,14 X12,4,13,3 X2,19,3,20 X14,7,15,8 X16,5,17,6 X6,15,7,16 X8,9,1,10 X18,12,19,11 X22,18,9,17 X4,22,5,21

Gauss Code: {{1, -4, 3, -11, 6, -7, 5, -8}, {8, -1, 9, -3, 2, -5, 7, -6, 10, -9, 4, -2, 11, -10}}

Jones Polynomial: q-15/2 - 4q-13/2 + 8q-11/2 - 14q-9/2 + 19q-7/2 - 23q-5/2 + 22q-3/2 - 20q-1/2 + 15q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 2q-20 - q-18 + q-16 + 4q-14 - 3q-12 + 5q-10 + q-6 + 3q-4 - 4q-2 + 4 - 3q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 + az + 3az3 + 3az5 + az7 - a3z-1 - 2a3z + 2a3z3 + 3a3z5 + a3z7 + a5z-1 - 2a5z3 - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - a-2z2 + 5a-2z4 - 4a-2z6 + a-1z - 5a-1z3 + 12a-1z5 - 8a-1z7 + 3z2 - 9z4 + 16z6 - 10z8 + az3 - 4az5 + 10az7 - 8az9 + 9a2z2 - 29a2z4 + 30a2z6 - 9a2z8 - 3a2z10 - a3z-1 + a3z + 13a3z3 - 36a3z5 + 37a3z7 - 15a3z9 + a4 + 8a4z2 - 30a4z4 + 29a4z6 - 6a4z8 - 3a4z10 - a5z-1 + 2a5z + a5z3 - 9a5z5 + 15a5z7 - 7a5z9 + 3a6z2 - 13a6z4 + 18a6z6 - 7a6z8 - 5a7z3 + 10a7z5 - 4a7z7 + 2a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        93  
j = 0       116   
j = -2      1210    
j = -4     1110     
j = -6    812      
j = -8   611       
j = -10  39        
j = -12 15         
j = -14 3          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 290]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 290]]
Out[4]=   
PD[X[10, 1, 11, 2], X[20, 13, 21, 14], X[12, 4, 13, 3], X[2, 19, 3, 20], 
 
>   X[14, 7, 15, 8], X[16, 5, 17, 6], X[6, 15, 7, 16], X[8, 9, 1, 10], 
 
>   X[18, 12, 19, 11], X[22, 18, 9, 17], X[4, 22, 5, 21]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 3, -11, 6, -7, 5, -8}, 
 
>   {8, -1, 9, -3, 2, -5, 7, -6, 10, -9, 4, -2, 11, -10}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     4       8      14     19     23     22      20
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 15 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    2     -18    -16    4     3     5     -6   3    4       2      6
4 - q    + --- - q    + q    + --- - --- + --- + q   + -- - -- - 3 q  + 2 q  - 
            20                  14    12    10          4    2
           q                   q     q     q           q    q
 
       8    10
>   2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 290]][a, z]
Out[8]=   
   3     5                         3                                 5
  a     a    z            3     2 z         3      3  3      5  3   z
-(--) + -- - - + a z - 2 a  z - ---- + 3 a z  + 2 a  z  - 2 a  z  - -- + 
  z     z    a                   a                                  a
 
         5      3  5    5  5      7    3  7
>   3 a z  + 3 a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 290]][a, z]
Out[9]=   
      3    5                               2
 4   a    a    z    3        5        2   z       2  2      4  2      6  2
a  - -- - -- + - + a  z + 2 a  z + 3 z  - -- + 9 a  z  + 8 a  z  + 3 a  z  + 
     z    z    a                           2
                                          a
 
     3      3                                                 4
    z    5 z       3       3  3    5  3      7  3      4   5 z        2  4
>   -- - ---- + a z  + 13 a  z  + a  z  - 5 a  z  - 9 z  + ---- - 29 a  z  - 
     3    a                                                  2
    a                                                       a
 
                                     5       5
        4  4       6  4      8  4   z    12 z         5       3  5      5  5
>   30 a  z  - 13 a  z  + 2 a  z  - -- + ----- - 4 a z  - 36 a  z  - 9 a  z  + 
                                     3     a
                                    a
 
                          6                                               7
        7  5       6   4 z        2  6       4  6       6  6    8  6   8 z
>   10 a  z  + 16 z  - ---- + 30 a  z  + 29 a  z  + 18 a  z  - a  z  - ---- + 
                         2                                              a
                        a
 
          7       3  7       5  7      7  7       8      2  8      4  8
>   10 a z  + 37 a  z  + 15 a  z  - 4 a  z  - 10 z  - 9 a  z  - 6 a  z  - 
 
       6  8        9       3  9      5  9      2  10      4  10
>   7 a  z  - 8 a z  - 15 a  z  - 7 a  z  - 3 a  z   - 3 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     10     1        3        1        5        3        9        6      11
11 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      8      12      11      10     12             2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 9 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a290
L11a289
L11a289
L11a291
L11a291