© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a280
L11a280
L11a282
L11a282
L11a281
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a281

Visit L11a281's page at Knotilus!

Acknowledgement

L11a281 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X8,9,1,10 X12,4,13,3 X22,16,9,15 X2,17,3,18 X4,22,5,21 X14,5,15,6 X20,13,21,14 X16,12,17,11 X6,19,7,20 X18,7,19,8

Gauss Code: {{1, -5, 3, -6, 7, -10, 11, -2}, {2, -1, 9, -3, 8, -7, 4, -9, 5, -11, 10, -8, 6, -4}}

Jones Polynomial: q-15/2 - 5q-13/2 + 11q-11/2 - 18q-9/2 + 23q-7/2 - 27q-5/2 + 26q-3/2 - 23q-1/2 + 16q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 3q-20 - 2q-18 + q-16 + 4q-14 - 4q-12 + 6q-10 - q-8 + 2q-6 + 3q-4 - 4q-2 + 5 - 4q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 + 2az + 4az3 + 3az5 + az7 - a3z-1 - 4a3z - a3z3 + 2a3z5 + a3z7 + a5z-1 + a5z - a5z3 - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - a-2z2 + 5a-2z4 - 4a-2z6 + a-1z - 5a-1z3 + 11a-1z5 - 8a-1z7 + 2z2 - 11z4 + 17z6 - 11z8 + az - 3az3 - 5az5 + 13az7 - 10az9 + 7a2z2 - 33a2z4 + 39a2z6 - 12a2z8 - 4a2z10 - a3z-1 + 2a3z + 7a3z3 - 30a3z5 + 43a3z7 - 20a3z9 + a4 + 5a4z2 - 28a4z4 + 40a4z6 - 11a4z8 - 4a4z10 - a5z-1 + a5z + a5z3 - 4a5z5 + 17a5z7 - 10a5z9 + a6z2 - 10a6z4 + 21a6z6 - 10a6z8 - a7z - 3a7z3 + 9a7z5 - 5a7z7 + a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        103  
j = 0       136   
j = -2      1411    
j = -4     1312     
j = -6    1014      
j = -8   813       
j = -10  411        
j = -12 17         
j = -14 4          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 281]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 281]]
Out[4]=   
PD[X[10, 1, 11, 2], X[8, 9, 1, 10], X[12, 4, 13, 3], X[22, 16, 9, 15], 
 
>   X[2, 17, 3, 18], X[4, 22, 5, 21], X[14, 5, 15, 6], X[20, 13, 21, 14], 
 
>   X[16, 12, 17, 11], X[6, 19, 7, 20], X[18, 7, 19, 8]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -5, 3, -6, 7, -10, 11, -2}, 
 
>   {2, -1, 9, -3, 8, -7, 4, -9, 5, -11, 10, -8, 6, -4}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     5      11      18     23     27     26      23
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 16 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    3     2     -16    4     4     6     -8   2    3    4       2
5 - q    + --- - --- + q    + --- - --- + --- - q   + -- + -- - -- - 4 q  + 
            20    18           14    12    10          6    4    2
           q     q            q     q     q           q    q    q
 
       6      8    10
>   2 q  - 2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 281]][a, z]
Out[8]=   
   3     5                                  3                             5
  a     a    z              3      5     2 z         3    3  3    5  3   z
-(--) + -- - - + 2 a z - 4 a  z + a  z - ---- + 4 a z  - a  z  - a  z  - -- + 
  z     z    a                            a                              a
 
         5      3  5    5  5      7    3  7
>   3 a z  + 2 a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 281]][a, z]
Out[9]=   
      3    5                                            2
 4   a    a    z            3      5      7        2   z       2  2      4  2
a  - -- - -- + - + a z + 2 a  z + a  z - a  z + 2 z  - -- + 7 a  z  + 5 a  z  + 
     z    z    a                                        2
                                                       a
 
             3      3                                                   4
     6  2   z    5 z         3      3  3    5  3      7  3       4   5 z
>   a  z  + -- - ---- - 3 a z  + 7 a  z  + a  z  - 3 a  z  - 11 z  + ---- - 
             3    a                                                    2
            a                                                         a
 
                                              5       5
        2  4       4  4       6  4    8  4   z    11 z         5       3  5
>   33 a  z  - 28 a  z  - 10 a  z  + a  z  - -- + ----- - 5 a z  - 30 a  z  - 
                                              3     a
                                             a
 
                                   6
       5  5      7  5       6   4 z        2  6       4  6       6  6    8  6
>   4 a  z  + 9 a  z  + 17 z  - ---- + 39 a  z  + 40 a  z  + 21 a  z  - a  z  - 
                                  2
                                 a
 
       7
    8 z          7       3  7       5  7      7  7       8       2  8
>   ---- + 13 a z  + 43 a  z  + 17 a  z  - 5 a  z  - 11 z  - 12 a  z  - 
     a
 
        4  8       6  8         9       3  9       5  9      2  10      4  10
>   11 a  z  - 10 a  z  - 10 a z  - 20 a  z  - 10 a  z  - 4 a  z   - 4 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     11     1        4        1        7        4        11       8      13
13 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      14      13      12     14              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 10 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a281
L11a280
L11a280
L11a282
L11a282