© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a274
L11a274
L11a276
L11a276
L11a275
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a275

Visit L11a275's page at Knotilus!

Acknowledgement

L11a275 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X2,11,3,12 X12,3,13,4 X14,5,15,6 X6,9,7,10 X18,8,19,7 X22,16,9,15 X20,18,21,17 X16,22,17,21 X8,20,1,19 X4,13,5,14

Gauss Code: {{1, -2, 3, -11, 4, -5, 6, -10}, {5, -1, 2, -3, 11, -4, 7, -9, 8, -6, 10, -8, 9, -7}}

Jones Polynomial: - q-15/2 + 2q-13/2 - 4q-11/2 + 6q-9/2 - 7q-7/2 + 7q-5/2 - 8q-3/2 + 6q-1/2 - 5q1/2 + 3q3/2 - 2q5/2 + q7/2

A2 (sl(3)) Invariant: q-22 + q-18 + q-16 + q-12 - q-10 + 2q-8 + q-6 + q-4 + 2q-2 + q2 - q10

HOMFLY-PT Polynomial: 3a-1z + 4a-1z3 + a-1z5 - 3az - 7az3 - 5az5 - az7 - a3z-1 - 6a3z - 8a3z3 - 5a3z5 - a3z7 + a5z-1 + 4a5z + 4a5z3 + a5z5

Kauffman Polynomial: 6a-2z2 - 11a-2z4 + 6a-2z6 - a-2z8 - 4a-1z + 16a-1z3 - 23a-1z5 + 12a-1z7 - 2a-1z9 + 6z2 - 12z4 + 3z6 + 3z8 - z10 - 3az + 14az3 - 27az5 + 19az7 - 4az9 + a2z2 - 6a2z4 + 6a2z6 + a2z8 - a2z10 - a3z-1 + 7a3z - 11a3z3 + 7a3z5 + 3a3z7 - 2a3z9 + a4 - 4a4z2 + 3a4z4 + 5a4z6 - 3a4z8 - a5z-1 + 4a5z - 6a5z3 + 8a5z5 - 4a5z7 - 4a6z2 + 6a6z4 - 4a6z6 - a7z + 2a7z3 - 3a7z5 + a8z2 - 2a8z4 + a9z - a9z3

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 8           1
j = 6          1 
j = 4         21 
j = 2        31  
j = 0       32   
j = -2      53    
j = -4     34     
j = -6    44      
j = -8   23       
j = -10  24        
j = -12 13         
j = -14 1          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 275]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 275]]
Out[4]=   
PD[X[10, 1, 11, 2], X[2, 11, 3, 12], X[12, 3, 13, 4], X[14, 5, 15, 6], 
 
>   X[6, 9, 7, 10], X[18, 8, 19, 7], X[22, 16, 9, 15], X[20, 18, 21, 17], 
 
>   X[16, 22, 17, 21], X[8, 20, 1, 19], X[4, 13, 5, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -2, 3, -11, 4, -5, 6, -10}, 
 
>   {5, -1, 2, -3, 11, -4, 7, -9, 8, -6, 10, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(15/2)     2       4      6      7      7      8        6
-q        + ----- - ----- + ---- - ---- + ---- - ---- + ------- - 5 Sqrt[q] + 
             13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q       q      q      q      q
 
       3/2      5/2    7/2
>   3 q    - 2 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -22    -18    -16    -12    -10   2     -6    -4   2     2    10
q    + q    + q    + q    - q    + -- + q   + q   + -- + q  - q
                                    8                2
                                   q                q
In[8]:=
HOMFLYPT[Link[11, Alternating, 275]][a, z]
Out[8]=   
   3     5                                      3
  a     a    3 z              3        5     4 z         3      3  3
-(--) + -- + --- - 3 a z - 6 a  z + 4 a  z + ---- - 7 a z  - 8 a  z  + 
  z     z     a                               a
 
               5
       5  3   z         5      3  5    5  5      7    3  7
>   4 a  z  + -- - 5 a z  - 5 a  z  + a  z  - a z  - a  z
              a
In[9]:=
Kauffman[Link[11, Alternating, 275]][a, z]
Out[9]=   
      3    5                                                           2
 4   a    a    4 z              3        5      7      9        2   6 z
a  - -- - -- - --- - 3 a z + 7 a  z + 4 a  z - a  z + a  z + 6 z  + ---- + 
     z    z     a                                                     2
                                                                     a
 
                                            3
     2  2      4  2      6  2    8  2   16 z          3       3  3      5  3
>   a  z  - 4 a  z  - 4 a  z  + a  z  + ----- + 14 a z  - 11 a  z  - 6 a  z  + 
                                          a
 
                                  4
       7  3    9  3       4   11 z       2  4      4  4      6  4      8  4
>   2 a  z  - a  z  - 12 z  - ----- - 6 a  z  + 3 a  z  + 6 a  z  - 2 a  z  - 
                                2
                               a
 
        5                                                     6
    23 z          5      3  5      5  5      7  5      6   6 z       2  6
>   ----- - 27 a z  + 7 a  z  + 8 a  z  - 3 a  z  + 3 z  + ---- + 6 a  z  + 
      a                                                      2
                                                            a
 
                            7                                         8
       4  6      6  6   12 z          7      3  7      5  7      8   z
>   5 a  z  - 4 a  z  + ----- + 19 a z  + 3 a  z  - 4 a  z  + 3 z  - -- + 
                          a                                           2
                                                                     a
 
                         9
     2  8      4  8   2 z         9      3  9    10    2  10
>   a  z  - 3 a  z  - ---- - 4 a z  - 2 a  z  - z   - a  z
                       a
In[10]:=
Kh[L][q, t]
Out[10]=   
4    5      1        1        1        3        2        4        2       3
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
 4    2    16  6    14  5    12  5    12  4    10  4    10  3    8  3    8  2
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      4      4      3           3 t      2      2  2    2  3      4  3
>   ----- + ---- + ---- + 3 t + --- + 2 t  + 3 q  t  + q  t  + 2 q  t  + 
     6  2    6      4            2
    q  t    q  t   q  t         q
 
     4  4    6  4    8  5
>   q  t  + q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a275
L11a274
L11a274
L11a276
L11a276