© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a265
L11a265
L11a267
L11a267
L11a266
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a266

Visit L11a266's page at Knotilus!

Acknowledgement

L11a266 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,4,13,3 X22,12,9,11 X2,9,3,10 X4,22,5,21 X14,6,15,5 X16,20,17,19 X18,8,19,7 X6,18,7,17 X20,16,21,15 X8,14,1,13

Gauss Code: {{1, -4, 2, -5, 6, -9, 8, -11}, {4, -1, 3, -2, 11, -6, 10, -7, 9, -8, 7, -10, 5, -3}}

Jones Polynomial: - q-1/2 + 3q1/2 - 7q3/2 + 11q5/2 - 16q7/2 + 18q9/2 - 19q11/2 + 16q13/2 - 12q15/2 + 8q17/2 - 4q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 - 1 + 3q4 - 3q6 + 3q8 + 2q10 - q12 + 4q14 - q16 + 3q18 - 2q22 + 3q24 - 3q26 + 2q30 - q32

HOMFLY-PT Polynomial: a-9z3 + a-7z - a-7z5 - a-5z-1 - 2a-5z - 3a-5z3 - 2a-5z5 + a-3z-1 + 2a-3z - a-3z5 + a-1z + a-1z3

Kauffman Polynomial: - a-12z2 + 2a-12z4 - a-12z6 + a-11z - 6a-11z3 + 10a-11z5 - 4a-11z7 - 7a-10z4 + 14a-10z6 - 6a-10z8 + 3a-9z - 13a-9z3 + 15a-9z5 + a-9z7 - 4a-9z9 + 2a-8z2 - 17a-8z4 + 28a-8z6 - 11a-8z8 - a-8z10 + 5a-7z - 19a-7z3 + 16a-7z5 + 4a-7z7 - 7a-7z9 + a-6z2 - 12a-6z4 + 20a-6z6 - 10a-6z8 - a-6z10 - a-5z-1 + 8a-5z - 20a-5z3 + 20a-5z5 - 6a-5z7 - 3a-5z9 + a-4 - 2a-4z2 + a-4z4 + 4a-4z6 - 5a-4z8 - a-3z-1 + 4a-3z - 6a-3z3 + 8a-3z5 - 5a-3z7 - 2a-2z2 + 5a-2z4 - 3a-2z6 - a-1z + 2a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          3 
j = 18         51 
j = 16        73  
j = 14       95   
j = 12      107    
j = 10     910     
j = 8    79      
j = 6   49       
j = 4  37        
j = 2 15         
j = 0 2          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 266]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 266]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 4, 13, 3], X[22, 12, 9, 11], X[2, 9, 3, 10], 
 
>   X[4, 22, 5, 21], X[14, 6, 15, 5], X[16, 20, 17, 19], X[18, 8, 19, 7], 
 
>   X[6, 18, 7, 17], X[20, 16, 21, 15], X[8, 14, 1, 13]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -4, 2, -5, 6, -9, 8, -11}, 
 
>   {4, -1, 3, -2, 11, -6, 10, -7, 9, -8, 7, -10, 5, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2       5/2       7/2       9/2       11/2
-(-------) + 3 Sqrt[q] - 7 q    + 11 q    - 16 q    + 18 q    - 19 q     + 
  Sqrt[q]
 
        13/2       15/2      17/2      19/2    21/2
>   16 q     - 12 q     + 8 q     - 4 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -2      4      6      8      10    12      14    16      18      22
-1 + q   + 3 q  - 3 q  + 3 q  + 2 q   - q   + 4 q   - q   + 3 q   - 2 q   + 
 
       24      26      30    32
>   3 q   - 3 q   + 2 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 266]][a, z]
Out[8]=   
                                       3      3    3    5      5    5
   1       1     z    2 z   2 z   z   z    3 z    z    z    2 z    z
-(----) + ---- + -- - --- + --- + - + -- - ---- + -- - -- - ---- - --
   5       3      7    5     3    a    9     5    a     7     5     3
  a  z    a  z   a    a     a         a     a          a     a     a
In[9]:=
Kauffman[Link[11, Alternating, 266]][a, z]
Out[9]=   
                                                       2       2    2      2
 -4    1      1      z    3 z   5 z   8 z   4 z   z   z     2 z    z    2 z
a   - ---- - ---- + --- + --- + --- + --- + --- - - - --- + ---- + -- - ---- - 
       5      3      11    9     7     5     3    a    12     8     6     4
      a  z   a  z   a     a     a     a     a         a      a     a     a
 
       2      3       3       3       3      3      3      4      4       4
    2 z    6 z    13 z    19 z    20 z    6 z    2 z    2 z    7 z    17 z
>   ---- - ---- - ----- - ----- - ----- - ---- + ---- + ---- - ---- - ----- - 
      2     11      9       7       5       3     a      12     10      8
     a     a       a       a       a       a            a      a       a
 
        4    4      4       5       5       5       5      5    5    6
    12 z    z    5 z    10 z    15 z    16 z    20 z    8 z    z    z
>   ----- + -- + ---- + ----- + ----- + ----- + ----- + ---- - -- - --- + 
      6      4     2      11      9       7       5       3    a     12
     a      a     a      a       a       a       a       a          a
 
        6       6       6      6      6      7    7      7      7      7
    14 z    28 z    20 z    4 z    3 z    4 z    z    4 z    6 z    5 z
>   ----- + ----- + ----- + ---- - ---- - ---- + -- + ---- - ---- - ---- - 
      10      8       6       4      2     11     9     7      5      3
     a       a       a       a      a     a      a     a      a      a
 
       8       8       8      8      9      9      9    10    10
    6 z    11 z    10 z    5 z    4 z    7 z    3 z    z     z
>   ---- - ----- - ----- - ---- - ---- - ---- - ---- - --- - ---
     10      8       6       4      9      7      5     8     6
    a       a       a       a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     2   q       4        6        6  2      8  2      8  3
5 q  + 3 q  + ----- + - + -- + 7 q  t + 4 q  t + 9 q  t  + 7 q  t  + 9 q  t  + 
               2  2   t   t
              q  t
 
       10  3       10  4       12  4      12  5      14  5      14  6
>   9 q   t  + 10 q   t  + 10 q   t  + 7 q   t  + 9 q   t  + 5 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   7 q   t  + 3 q   t  + 5 q   t  + q   t  + 3 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a266
L11a265
L11a265
L11a267
L11a267