© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a255
L11a255
L11a257
L11a257
L11a256
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a256

Visit L11a256's page at Knotilus!

Acknowledgement

L11a256 as Morse Link
DrawMorseLink

PD Presentation: X10,1,11,2 X12,3,13,4 X14,5,15,6 X18,10,19,9 X22,18,9,17 X8,21,1,22 X20,15,21,16 X16,8,17,7 X6,20,7,19 X4,11,5,12 X2,13,3,14

Gauss Code: {{1, -11, 2, -10, 3, -9, 8, -6}, {4, -1, 10, -2, 11, -3, 7, -8, 5, -4, 9, -7, 6, -5}}

Jones Polynomial: q-15/2 - 3q-13/2 + 6q-11/2 - 12q-9/2 + 16q-7/2 - 20q-5/2 + 20q-3/2 - 18q-1/2 + 14q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + q-20 - q-18 + q-16 + 5q-14 - q-12 + 5q-10 - q-6 + 2q-4 - 4q-2 + 4 - 2q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 - az + 2az3 + 3az5 + az7 - a3z-1 + 2a3z + 6a3z3 + 4a3z5 + a3z7 + a5z-1 - 2a5z - 3a5z3 - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - a-2z2 + 5a-2z4 - 4a-2z6 + a-1z - 6a-1z3 + 13a-1z5 - 8a-1z7 + 2z2 - 7z4 + 14z6 - 9z8 - 2az + az3 + 2az5 + 4az7 - 6az9 + 2a2z2 - 11a2z4 + 18a2z6 - 8a2z8 - 2a2z10 - a3z-1 - a3z + 13a3z3 - 22a3z5 + 21a3z7 - 10a3z9 + a4 - a4z2 - 4a4z4 + 9a4z6 - 3a4z8 - 2a4z10 - a5z-1 + 4a5z - 3a5z3 - a5z5 + 6a5z7 - 4a5z9 - 2a6z2 - 2a6z4 + 8a6z6 - 4a6z8 + 2a7z - 8a7z3 + 9a7z5 - 3a7z7 - 2a8z2 + 3a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        83  
j = 0       106   
j = -2      119    
j = -4     99     
j = -6    711      
j = -8   59       
j = -10  28        
j = -12 14         
j = -14 2          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 256]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 256]]
Out[4]=   
PD[X[10, 1, 11, 2], X[12, 3, 13, 4], X[14, 5, 15, 6], X[18, 10, 19, 9], 
 
>   X[22, 18, 9, 17], X[8, 21, 1, 22], X[20, 15, 21, 16], X[16, 8, 17, 7], 
 
>   X[6, 20, 7, 19], X[4, 11, 5, 12], X[2, 13, 3, 14]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 2, -10, 3, -9, 8, -6}, 
 
>   {4, -1, 10, -2, 11, -3, 7, -8, 5, -4, 9, -7, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     3       6      12     16     20     20      18
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 14 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    -20    -18    -16    5     -12    5     -6   2    4       2
4 - q    + q    - q    + q    + --- - q    + --- - q   + -- - -- - 2 q  + 
                                 14           10          4    2
                                q            q           q    q
 
       6      8    10
>   2 q  - 2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 256]][a, z]
Out[8]=   
   3     5                                  3
  a     a    z            3        5     2 z         3      3  3      5  3
-(--) + -- - - - a z + 2 a  z - 2 a  z - ---- + 2 a z  + 6 a  z  - 3 a  z  - 
  z     z    a                            a
 
     5
    z         5      3  5    5  5      7    3  7
>   -- + 3 a z  + 4 a  z  - a  z  + a z  + a  z
    a
In[9]:=
Kauffman[Link[11, Alternating, 256]][a, z]
Out[9]=   
      3    5                                                2
 4   a    a    z            3        5        7        2   z       2  2
a  - -- - -- + - - 2 a z - a  z + 4 a  z + 2 a  z + 2 z  - -- + 2 a  z  - 
     z    z    a                                            2
                                                           a
 
                                 3      3
     4  2      6  2      8  2   z    6 z       3       3  3      5  3
>   a  z  - 2 a  z  - 2 a  z  + -- - ---- + a z  + 13 a  z  - 3 a  z  - 
                                 3    a
                                a
 
                        4                                             5
       7  3      4   5 z        2  4      4  4      6  4      8  4   z
>   8 a  z  - 7 z  + ---- - 11 a  z  - 4 a  z  - 2 a  z  + 3 a  z  - -- + 
                       2                                              3
                      a                                              a
 
        5                                                    6
    13 z         5       3  5    5  5      7  5       6   4 z        2  6
>   ----- + 2 a z  - 22 a  z  - a  z  + 9 a  z  + 14 z  - ---- + 18 a  z  + 
      a                                                     2
                                                           a
 
                                   7
       4  6      6  6    8  6   8 z         7       3  7      5  7      7  7
>   9 a  z  + 8 a  z  - a  z  - ---- + 4 a z  + 21 a  z  + 6 a  z  - 3 a  z  - 
                                 a
 
       8      2  8      4  8      6  8        9       3  9      5  9
>   9 z  - 8 a  z  - 3 a  z  - 4 a  z  - 6 a z  - 10 a  z  - 4 a  z  - 
 
       2  10      4  10
>   2 a  z   - 2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     9      1        2        1        4        2        8        5       9
10 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      11       9      9      11             2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 8 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a256
L11a255
L11a255
L11a257
L11a257