© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a23
L11a23
L11a25
L11a25
L11a24
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a24

Visit L11a24's page at Knotilus!

Acknowledgement

L11a24 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,3,11,4 X14,8,15,7 X18,11,19,12 X22,19,5,20 X20,15,21,16 X16,21,17,22 X12,17,13,18 X8,14,9,13 X2536 X4,9,1,10

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 4, -8, 9, -3, 6, -7, 8, -4, 5, -6, 7, -5}}

Jones Polynomial: q-21/2 - 3q-19/2 + 8q-17/2 - 14q-15/2 + 18q-13/2 - 22q-11/2 + 21q-9/2 - 19q-7/2 + 14q-5/2 - 8q-3/2 + 3q-1/2 - q1/2

A2 (sl(3)) Invariant: - q-34 - 2q-32 + q-30 - 3q-26 + 5q-24 + q-20 + 5q-18 - 2q-16 + 4q-14 - 3q-12 + q-10 + 3q-8 - 4q-6 + 4q-4 - 1 + q2

HOMFLY-PT Polynomial: - az - az3 - a3z-1 - 3a3z - a3z3 + a3z5 + 2a5z-1 + 7a5z + 7a5z3 + 3a5z5 - 3a7z-1 - 9a7z - 6a7z3 + 3a9z-1 + 4a9z - a11z-1

Kauffman Polynomial: - az + 2az3 - az5 - a2z2 + 4a2z4 - 3a2z6 - a3z-1 + 5a3z - 8a3z3 + 9a3z5 - 6a3z7 + 6a4z2 - 13a4z4 + 13a4z6 - 8a4z8 - 2a5z-1 + 13a5z - 31a5z3 + 27a5z5 - 5a5z7 - 5a5z9 - 2a6 + 18a6z2 - 45a6z4 + 48a6z6 - 19a6z8 - a6z10 - 3a7z-1 + 15a7z - 36a7z3 + 31a7z5 + 2a7z7 - 9a7z9 + 12a8z2 - 34a8z4 + 42a8z6 - 16a8z8 - a8z10 - 3a9z-1 + 11a9z - 21a9z3 + 21a9z5 - 2a9z7 - 4a9z9 + 2a10 - 2a10z2 - 3a10z4 + 9a10z6 - 5a10z8 - a11z-1 + 3a11z - 6a11z3 + 7a11z5 - 3a11z7 + a12 - 3a12z2 + 3a12z4 - a12z6

Khovanov Homology:
trqj r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2
j = 2           1
j = 0          2 
j = -2         61 
j = -4        93  
j = -6       105   
j = -8      119    
j = -10     1110     
j = -12    812      
j = -14   610       
j = -16  28        
j = -18 16         
j = -20 2          
j = -221           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 24]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 24]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[14, 8, 15, 7], X[18, 11, 19, 12], 
 
>   X[22, 19, 5, 20], X[20, 15, 21, 16], X[16, 21, 17, 22], X[12, 17, 13, 18], 
 
>   X[8, 14, 9, 13], X[2, 5, 3, 6], X[4, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -9, 11, -2, 4, -8, 9, -3, 6, -7, 8, -4, 
 
>    5, -6, 7, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(21/2)     3       8      14      18      22      21     19     14     8
q        - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
            19/2    17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
           q       q       q       q       q       q      q      q      q
 
       3
>   ------- - Sqrt[q]
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -34    2     -30    3     5     -20    5     2     4     3     -10   3
-1 - q    - --- + q    - --- + --- + q    + --- - --- + --- - --- + q    + -- - 
             32           26    24           18    16    14    12           8
            q            q     q            q     q     q     q            q
 
    4    4     2
>   -- + -- + q
     6    4
    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 24]][a, z]
Out[8]=   
   3       5      7      9    11
  a     2 a    3 a    3 a    a              3        5        7        9
-(--) + ---- - ---- + ---- - --- - a z - 3 a  z + 7 a  z - 9 a  z + 4 a  z - 
  z      z      z      z      z
 
       3    3  3      5  3      7  3    3  5      5  5
>   a z  - a  z  + 7 a  z  - 6 a  z  + a  z  + 3 a  z
In[9]:=
Kauffman[Link[11, Alternating, 24]][a, z]
Out[9]=   
                       3      5      7      9    11
    6      10    12   a    2 a    3 a    3 a    a              3         5
-2 a  + 2 a   + a   - -- - ---- - ---- - ---- - --- - a z + 5 a  z + 13 a  z + 
                      z     z      z      z      z
 
        7         9        11      2  2      4  2       6  2       8  2
>   15 a  z + 11 a  z + 3 a   z - a  z  + 6 a  z  + 18 a  z  + 12 a  z  - 
 
       10  2      12  2        3      3  3       5  3       7  3       9  3
>   2 a   z  - 3 a   z  + 2 a z  - 8 a  z  - 31 a  z  - 36 a  z  - 21 a  z  - 
 
       11  3      2  4       4  4       6  4       8  4      10  4      12  4
>   6 a   z  + 4 a  z  - 13 a  z  - 45 a  z  - 34 a  z  - 3 a   z  + 3 a   z  - 
 
       5      3  5       5  5       7  5       9  5      11  5      2  6
>   a z  + 9 a  z  + 27 a  z  + 31 a  z  + 21 a  z  + 7 a   z  - 3 a  z  + 
 
        4  6       6  6       8  6      10  6    12  6      3  7      5  7
>   13 a  z  + 48 a  z  + 42 a  z  + 9 a   z  - a   z  - 6 a  z  - 5 a  z  + 
 
       7  7      9  7      11  7      4  8       6  8       8  8      10  8
>   2 a  z  - 2 a  z  - 3 a   z  - 8 a  z  - 19 a  z  - 16 a  z  - 5 a   z  - 
 
       5  9      7  9      9  9    6  10    8  10
>   5 a  z  - 9 a  z  - 4 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
3    6      1        2        1        6        2        8        6
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    22  9    20  8    18  8    18  7    16  7    16  6    14  6
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      10       8        12       11       10      11       9      10      5
>   ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- + 
     14  5    12  5    12  4    10  4    10  3    8  3    8  2    6  2    6
    q   t    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     9           t     2  2
>   ---- + 2 t + -- + q  t
     4            2
    q  t         q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a24
L11a23
L11a23
L11a25
L11a25