© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a226
L11a226
L11a228
L11a228
L11a227
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a227

Visit L11a227's page at Knotilus!

Acknowledgement

L11a227 as Morse Link
DrawMorseLink

PD Presentation: X8192 X20,9,21,10 X4758 X16,5,17,6 X14,18,15,17 X6,15,1,16 X22,14,7,13 X18,22,19,21 X2,11,3,12 X12,3,13,4 X10,19,11,20

Gauss Code: {{1, -9, 10, -3, 4, -6}, {3, -1, 2, -11, 9, -10, 7, -5, 6, -4, 5, -8, 11, -2, 8, -7}}

Jones Polynomial: - q-19/2 + 3q-17/2 - 8q-15/2 + 14q-13/2 - 20q-11/2 + 23q-9/2 - 24q-7/2 + 21q-5/2 - 16q-3/2 + 10q-1/2 - 5q1/2 + q3/2

A2 (sl(3)) Invariant: q-30 + q-28 - q-26 + 3q-24 + q-22 - 3q-20 + 4q-18 - 3q-16 + 2q-14 + 2q-12 - 2q-10 + 5q-8 - 5q-6 + 3q-4 + q-2 - 2 + 3q2 - q4

HOMFLY-PT Polynomial: - az + az3 + az5 - a3z-1 - 3a3z - 4a3z3 - 3a3z5 - a3z7 + 2a5z-1 + 5a5z + 7a5z3 + 3a5z5 - 2a7z-1 - 5a7z - 3a7z3 + a9z-1 + a9z

Kauffman Polynomial: z4 - z6 - az - 4az3 + 10az5 - 5az7 + a2z2 - 11a2z4 + 20a2z6 - 9a2z8 - a3z-1 + 5a3z - 14a3z3 + 16a3z5 + 5a3z7 - 7a3z9 + 8a4z2 - 34a4z4 + 48a4z6 - 17a4z8 - 2a4z10 - 2a5z-1 + 12a5z - 26a5z3 + 15a5z5 + 15a5z7 - 13a5z9 - a6 + 12a6z2 - 37a6z4 + 42a6z6 - 16a6z8 - 2a6z10 - 2a7z-1 + 12a7z - 26a7z3 + 19a7z5 - a7z7 - 6a7z9 + 4a8z2 - 11a8z4 + 12a8z6 - 8a8z8 - a9z-1 + 5a9z - 8a9z3 + 9a9z5 - 6a9z7 - a10z2 + 4a10z4 - 3a10z6 - a11z + 2a11z3 - a11z5

Khovanov Homology:
trqj r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3
j = 4           1
j = 2          4 
j = 0         61 
j = -2        104  
j = -4       127   
j = -6      129    
j = -8     1112     
j = -10    912      
j = -12   511       
j = -14  39        
j = -16 16         
j = -18 2          
j = -201           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 227]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 227]]
Out[4]=   
PD[X[8, 1, 9, 2], X[20, 9, 21, 10], X[4, 7, 5, 8], X[16, 5, 17, 6], 
 
>   X[14, 18, 15, 17], X[6, 15, 1, 16], X[22, 14, 7, 13], X[18, 22, 19, 21], 
 
>   X[2, 11, 3, 12], X[12, 3, 13, 4], X[10, 19, 11, 20]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 10, -3, 4, -6}, 
 
>   {3, -1, 2, -11, 9, -10, 7, -5, 6, -4, 5, -8, 11, -2, 8, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(19/2)     3       8      14      20      23     24     21     16
-q        + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- + 
             17/2    15/2    13/2    11/2    9/2    7/2    5/2    3/2
            q       q       q       q       q      q      q      q
 
      10                   3/2
>   ------- - 5 Sqrt[q] + q
    Sqrt[q]
In[7]:=
A2Invariant[L][q]
Out[7]=   
      -30    -28    -26    3     -22    3     4     3     2     2     2    5
-2 + q    + q    - q    + --- + q    - --- + --- - --- + --- + --- - --- + -- - 
                           24           20    18    16    14    12    10    8
                          q            q     q     q     q     q     q     q
 
    5    3     -2      2    4
>   -- + -- + q   + 3 q  - q
     6    4
    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 227]][a, z]
Out[8]=   
   3       5      7    9
  a     2 a    2 a    a             3        5        7      9        3
-(--) + ---- - ---- + -- - a z - 3 a  z + 5 a  z - 5 a  z + a  z + a z  - 
  z      z      z     z
 
       3  3      5  3      7  3      5      3  5      5  5    3  7
>   4 a  z  + 7 a  z  - 3 a  z  + a z  - 3 a  z  + 3 a  z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 227]][a, z]
Out[9]=   
       3      5      7    9
  6   a    2 a    2 a    a             3         5         7        9
-a  - -- - ---- - ---- - -- - a z + 5 a  z + 12 a  z + 12 a  z + 5 a  z - 
      z     z      z     z
 
     11      2  2      4  2       6  2      8  2    10  2        3       3  3
>   a   z + a  z  + 8 a  z  + 12 a  z  + 4 a  z  - a   z  - 4 a z  - 14 a  z  - 
 
        5  3       7  3      9  3      11  3    4       2  4       4  4
>   26 a  z  - 26 a  z  - 8 a  z  + 2 a   z  + z  - 11 a  z  - 34 a  z  - 
 
        6  4       8  4      10  4         5       3  5       5  5       7  5
>   37 a  z  - 11 a  z  + 4 a   z  + 10 a z  + 16 a  z  + 15 a  z  + 19 a  z  + 
 
       9  5    11  5    6       2  6       4  6       6  6       8  6
>   9 a  z  - a   z  - z  + 20 a  z  + 48 a  z  + 42 a  z  + 12 a  z  - 
 
       10  6        7      3  7       5  7    7  7      9  7      2  8
>   3 a   z  - 5 a z  + 5 a  z  + 15 a  z  - a  z  - 6 a  z  - 9 a  z  - 
 
        4  8       6  8      8  8      3  9       5  9      7  9      4  10
>   17 a  z  - 16 a  z  - 8 a  z  - 7 a  z  - 13 a  z  - 6 a  z  - 2 a  z   - 
 
       6  10
>   2 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
7    10     1        2        1        6        3        9        5
-- + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
 4    2    20  8    18  7    16  7    16  6    14  6    14  5    12  5
q    q    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      11       9        12      11      12      12      9      12
>   ------ + ------ + ------ + ----- + ----- + ----- + ---- + ---- + 6 t + 
     12  4    10  4    10  3    8  3    8  2    6  2    6      4
    q   t    q   t    q   t    q  t    q  t    q  t    q  t   q  t
 
    4 t    2      2  2    4  3
>   --- + t  + 4 q  t  + q  t
     2
    q


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a227
L11a226
L11a226
L11a228
L11a228