© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a21
L11a21
L11a23
L11a23
L11a22
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a22

Visit L11a22's page at Knotilus!

Acknowledgement

L11a22 as Morse Link
DrawMorseLink

PD Presentation: X6172 X10,4,11,3 X12,8,13,7 X18,10,19,9 X22,14,5,13 X20,16,21,15 X16,20,17,19 X14,22,15,21 X8,18,9,17 X2536 X4,12,1,11

Gauss Code: {{1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -8, 6, -7, 9, -4, 7, -6, 8, -5}}

Jones Polynomial: - q-1/2 + 2q1/2 - 5q3/2 + 7q5/2 - 11q7/2 + 12q9/2 - 13q11/2 + 11q13/2 - 8q15/2 + 6q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q2 + 3q4 - q6 + 3q8 + 2q10 + 3q14 + 2q18 - 2q22 + q24 - 3q26 - q28 + q30 - q32

HOMFLY-PT Polynomial: a-9z-1 + a-9z + a-9z3 - 2a-7z-1 - 3a-7z - 2a-7z3 - a-7z5 + a-5z-1 + 2a-5z - a-5z5 - a-3z-1 - 2a-3z - 2a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: - a-12z2 + 3a-12z4 - a-12z6 - 4a-11z3 + 9a-11z5 - 3a-11z7 - 3a-10 + 10a-10z2 - 19a-10z4 + 18a-10z6 - 5a-10z8 + a-9z-1 - 3a-9z + 8a-9z3 - 14a-9z5 + 13a-9z7 - 4a-9z9 - 7a-8 + 27a-8z2 - 44a-8z4 + 28a-8z6 - 5a-8z8 - a-8z10 + 2a-7z-1 - 8a-7z + 20a-7z3 - 32a-7z5 + 21a-7z7 - 6a-7z9 - 4a-6 + 17a-6z2 - 23a-6z4 + 11a-6z6 - 2a-6z8 - a-6z10 + a-5z-1 - 7a-5z + 12a-5z3 - 8a-5z5 + 3a-5z7 - 2a-5z9 + 3a-4z4 - 2a-4z8 + a-3z-1 - 5a-3z + 7a-3z3 - 2a-3z7 - a-2 - a-2z2 + 4a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          2 
j = 18         41 
j = 16        42  
j = 14       74   
j = 12      64    
j = 10     67     
j = 8    56      
j = 6   26       
j = 4  35        
j = 2 14         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 22]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 22]]
Out[4]=   
PD[X[6, 1, 7, 2], X[10, 4, 11, 3], X[12, 8, 13, 7], X[18, 10, 19, 9], 
 
>   X[22, 14, 5, 13], X[20, 16, 21, 15], X[16, 20, 17, 19], X[14, 22, 15, 21], 
 
>   X[8, 18, 9, 17], X[2, 5, 3, 6], X[4, 12, 1, 11]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -8, 6, -7, 9, -4, 
 
>    7, -6, 8, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2       7/2       9/2       11/2
-(-------) + 2 Sqrt[q] - 5 q    + 7 q    - 11 q    + 12 q    - 13 q     + 
  Sqrt[q]
 
        13/2      15/2      17/2      19/2    21/2
>   11 q     - 8 q     + 6 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4    6      8      10      14      18      22    24      26
q   + q  + 3 q  - q  + 3 q  + 2 q   + 3 q   + 2 q   - 2 q   + q   - 3 q   - 
 
     28    30    32
>   q   + q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 22]][a, z]
Out[8]=   
                                                                3      3
 1      2      1      1      1    z    3 z   2 z   2 z   2 z   z    2 z
---- - ---- + ---- - ---- + --- + -- - --- + --- - --- + --- + -- - ---- - 
 9      7      5      3     a z    9    7     5     3     a     9     7
a  z   a  z   a  z   a  z         a    a     a     a           a     a
 
       3    3    5    5    5
    2 z    z    z    z    z
>   ---- + -- - -- - -- - --
      3    a     7    5    3
     a          a    a    a
In[9]:=
Kauffman[Link[11, Alternating, 22]][a, z]
Out[9]=   
-3    7    4     -2    1      2      1      1      1    3 z   8 z   7 z   5 z
--- - -- - -- - a   + ---- + ---- + ---- + ---- + --- - --- - --- - --- - --- - 
 10    8    6          9      7      5      3     a z    9     7     5     3
a     a    a          a  z   a  z   a  z   a  z         a     a     a     a
 
           2        2       2       2    2      3      3       3       3
    3 z   z     10 z    27 z    17 z    z    4 z    8 z    20 z    12 z
>   --- - --- + ----- + ----- + ----- - -- - ---- + ---- + ----- + ----- + 
     a     12     10      8       6      2    11      9      7       5
          a      a       a       a      a    a       a      a       a
 
       3      3      4       4       4       4      4      4      5       5
    7 z    3 z    3 z    19 z    44 z    23 z    3 z    4 z    9 z    14 z
>   ---- + ---- + ---- - ----- - ----- - ----- + ---- + ---- + ---- - ----- - 
      3     a      12      10      8       6       4      2     11      9
     a            a       a       a       a       a      a     a       a
 
        5      5    5    6        6       6       6      6      7       7
    32 z    8 z    z    z     18 z    28 z    11 z    2 z    3 z    13 z
>   ----- - ---- - -- - --- + ----- + ----- + ----- - ---- - ---- + ----- + 
      7       5    a     12     10      8       6       2     11      9
     a       a          a      a       a       a       a     a       a
 
        7      7      7      8      8      8      8      9      9      9
    21 z    3 z    2 z    5 z    5 z    2 z    2 z    4 z    6 z    2 z
>   ----- + ---- - ---- - ---- - ---- - ---- - ---- - ---- - ---- - ---- - 
      7       5      3     10      8      6      4      9      7      5
     a       a      a     a       a      a      a      a      a      a
 
     10    10
    z     z
>   --- - ---
     8     6
    a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
4 q  + 3 q  + ----- + - + -- + 5 q  t + 2 q  t + 6 q  t  + 5 q  t  + 6 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   6 q   t  + 7 q   t  + 6 q   t  + 4 q   t  + 7 q   t  + 4 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   4 q   t  + 2 q   t  + 4 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a22
L11a21
L11a21
L11a23
L11a23