© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a215
L11a215
L11a217
L11a217
L11a216
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a216

Visit L11a216's page at Knotilus!

Acknowledgement

L11a216 as Morse Link
DrawMorseLink

PD Presentation: X8192 X12,3,13,4 X14,17,15,18 X16,5,17,6 X4,15,5,16 X18,13,19,14 X22,19,7,20 X20,9,21,10 X10,21,11,22 X2738 X6,11,1,12

Gauss Code: {{1, -10, 2, -5, 4, -11}, {10, -1, 8, -9, 11, -2, 6, -3, 5, -4, 3, -6, 7, -8, 9, -7}}

Jones Polynomial: q-27/2 - 4q-25/2 + 8q-23/2 - 13q-21/2 + 18q-19/2 - 20q-17/2 + 20q-15/2 - 18q-13/2 + 12q-11/2 - 8q-9/2 + 3q-7/2 - q-5/2

A2 (sl(3)) Invariant: - q-42 + 3q-38 - 2q-36 + q-32 - 5q-30 + 2q-28 - q-26 + 2q-24 + 4q-22 - q-20 + 6q-18 - q-16 + 3q-12 - 2q-10 + q-8

HOMFLY-PT Polynomial: - a5z - 2a5z3 - a5z5 - 2a7z-1 - 7a7z - 8a7z3 - 3a7z5 + 3a9z-1 + 3a9z - 2a9z3 - 2a9z5 - a11z-1 + 3a11z + 3a11z3 - a13z

Kauffman Polynomial: - a5z + 2a5z3 - a5z5 - a6z2 + 4a6z4 - 3a6z6 - 2a7z-1 + 8a7z - 12a7z3 + 11a7z5 - 6a7z7 + 3a8 - 8a8z2 + 5a8z4 + 4a8z6 - 6a8z8 - 3a9z-1 + 10a9z - 19a9z3 + 19a9z5 - 5a9z7 - 4a9z9 + 3a10 - a10z2 - 17a10z4 + 29a10z6 - 14a10z8 - a10z10 - a11z-1 + 3a11z - 16a11z3 + 19a11z5 + 3a11z7 - 8a11z9 + a12 + 8a12z2 - 27a12z4 + 36a12z6 - 14a12z8 - a12z10 + 3a13z - 18a13z3 + 22a13z5 - 2a13z7 - 4a13z9 + a14z2 - 7a14z4 + 13a14z6 - 6a14z8 + a15z - 7a15z3 + 10a15z5 - 4a15z7 - a16z2 + 2a16z4 - a16z6

Khovanov Homology:
trqj r = -11r = -10r = -9r = -8r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0
j = -4           1
j = -6          31
j = -8         5  
j = -10        73  
j = -12       115   
j = -14      97    
j = -16     1111     
j = -18    810      
j = -20   510       
j = -22  38        
j = -24 15         
j = -26 3          
j = -281           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 216]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 216]]
Out[4]=   
PD[X[8, 1, 9, 2], X[12, 3, 13, 4], X[14, 17, 15, 18], X[16, 5, 17, 6], 
 
>   X[4, 15, 5, 16], X[18, 13, 19, 14], X[22, 19, 7, 20], X[20, 9, 21, 10], 
 
>   X[10, 21, 11, 22], X[2, 7, 3, 8], X[6, 11, 1, 12]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -5, 4, -11}, 
 
>   {10, -1, 8, -9, 11, -2, 6, -3, 5, -4, 3, -6, 7, -8, 9, -7}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(27/2)     4       8      13      18      20      20      18      12
q        - ----- + ----- - ----- + ----- - ----- + ----- - ----- + ----- - 
            25/2    23/2    21/2    19/2    17/2    15/2    13/2    11/2
           q       q       q       q       q       q       q       q
 
     8      3      -(5/2)
>   ---- + ---- - q
     9/2    7/2
    q      q
In[7]:=
A2Invariant[L][q]
Out[7]=   
  -42    3     2     -32    5     2     -26    2     4     -20    6     -16
-q    + --- - --- + q    - --- + --- - q    + --- + --- - q    + --- - q    + 
         38    36           30    28           24    22           18
        q     q            q     q            q     q            q
 
     3     2     -8
>   --- - --- + q
     12    10
    q     q
In[8]:=
HOMFLYPT[Link[11, Alternating, 216]][a, z]
Out[8]=   
    7      9    11
-2 a    3 a    a      5        7        9        11      13        5  3
----- + ---- - --- - a  z - 7 a  z + 3 a  z + 3 a   z - a   z - 2 a  z  - 
  z      z      z
 
       7  3      9  3      11  3    5  5      7  5      9  5
>   8 a  z  - 2 a  z  + 3 a   z  - a  z  - 3 a  z  - 2 a  z
In[9]:=
Kauffman[Link[11, Alternating, 216]][a, z]
Out[9]=   
                        7      9    11
   8      10    12   2 a    3 a    a      5        7         9        11
3 a  + 3 a   + a   - ---- - ---- - --- - a  z + 8 a  z + 10 a  z + 3 a   z + 
                      z      z      z
 
       13      15      6  2      8  2    10  2      12  2    14  2    16  2
>   3 a   z + a   z - a  z  - 8 a  z  - a   z  + 8 a   z  + a   z  - a   z  + 
 
       5  3       7  3       9  3       11  3       13  3      15  3
>   2 a  z  - 12 a  z  - 19 a  z  - 16 a   z  - 18 a   z  - 7 a   z  + 
 
       6  4      8  4       10  4       12  4      14  4      16  4    5  5
>   4 a  z  + 5 a  z  - 17 a   z  - 27 a   z  - 7 a   z  + 2 a   z  - a  z  + 
 
        7  5       9  5       11  5       13  5       15  5      6  6
>   11 a  z  + 19 a  z  + 19 a   z  + 22 a   z  + 10 a   z  - 3 a  z  + 
 
       8  6       10  6       12  6       14  6    16  6      7  7      9  7
>   4 a  z  + 29 a   z  + 36 a   z  + 13 a   z  - a   z  - 6 a  z  - 5 a  z  + 
 
       11  7      13  7      15  7      8  8       10  8       12  8
>   3 a   z  - 2 a   z  - 4 a   z  - 6 a  z  - 14 a   z  - 14 a   z  - 
 
       14  8      9  9      11  9      13  9    10  10    12  10
>   6 a   z  - 4 a  z  - 8 a   z  - 4 a   z  - a   z   - a   z
In[10]:=
Kh[L][q, t]
Out[10]=   
 -6    -4      1         3         1        5        3        8        5
q   + q   + ------- + ------- + ------- + ------ + ------ + ------ + ------ + 
             28  11    26  10    24  10    24  9    22  9    22  8    20  8
            q   t     q   t     q   t     q   t    q   t    q   t    q   t
 
      10       8        10       11       11       9        7        11
>   ------ + ------ + ------ + ------ + ------ + ------ + ------ + ------ + 
     20  7    18  7    18  6    16  6    16  5    14  5    14  4    12  4
    q   t    q   t    q   t    q   t    q   t    q   t    q   t    q   t
 
      5        7        3        5      3
>   ------ + ------ + ------ + ----- + ----
     12  3    10  3    10  2    8  2    6
    q   t    q   t    q   t    q  t    q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a216
L11a215
L11a215
L11a217
L11a217