PD Presentation: |
X8192 X2,9,3,10 X10,3,11,4 X6718 X18,15,19,16 X16,6,17,5 X4,18,5,17 X22,11,7,12 X20,13,21,14 X14,19,15,20 X12,21,13,22 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, Alternating, 206]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, Alternating, 206]] |
Out[4]= | PD[X[8, 1, 9, 2], X[2, 9, 3, 10], X[10, 3, 11, 4], X[6, 7, 1, 8],
> X[18, 15, 19, 16], X[16, 6, 17, 5], X[4, 18, 5, 17], X[22, 11, 7, 12],
> X[20, 13, 21, 14], X[14, 19, 15, 20], X[12, 21, 13, 22]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -2, 3, -7, 6, -4},
> {4, -1, 2, -3, 8, -11, 9, -10, 5, -6, 7, -5, 10, -9, 11, -8}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(21/2) 2 3 5 6 7 7 6 4 3
q - ----- + ----- - ----- + ----- - ----- + ---- - ---- + ---- - ---- +
19/2 17/2 15/2 13/2 11/2 9/2 7/2 5/2 3/2
q q q q q q q q q
1
> ------- - Sqrt[q]
Sqrt[q] |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -32 2 -16 -14 -10 2 2 -2 2
1 - q + --- - q + q + q + -- + -- + q + q
24 8 4
q q q |
In[8]:= | HOMFLYPT[Link[11, Alternating, 206]][a, z] |
Out[8]= | 3
a a 3 7 9 3 3 3 5 3
-(-) + -- - 3 a z + 2 a z + 2 a z - 2 a z - a z + 3 a z + 2 a z +
z z
7 3 9 3 3 5 5 5 7 5
> 3 a z - a z + a z + a z + a z |
In[9]:= | Kauffman[Link[11, Alternating, 206]][a, z] |
Out[9]= | 3
2 a a 3 5 7 9 11 2 2
-a + - + -- - 4 a z - 3 a z + a z - 3 a z - 2 a z + a z + a z +
z z
4 2 6 2 8 2 10 2 12 2 3 3 3 5 3
> a z - 6 a z - 2 a z + a z - 3 a z + 4 a z + 3 a z - a z +
7 3 9 3 11 3 2 4 4 4 6 4 8 4
> 19 a z + 12 a z - 7 a z + 2 a z - 2 a z + 11 a z + 6 a z -
10 4 12 4 5 3 5 5 5 7 5 9 5
> 5 a z + 4 a z - a z + a z - 4 a z - 29 a z - 15 a z +
11 5 2 6 4 6 6 6 8 6 10 6 12 6
> 8 a z - a z + 2 a z - 12 a z - 7 a z + 7 a z - a z -
3 7 5 7 7 7 9 7 11 7 4 8 6 8
> a z + 3 a z + 15 a z + 9 a z - 2 a z - a z + 5 a z +
8 8 10 8 5 9 7 9 9 9 6 10 8 10
> 4 a z - 2 a z - a z - 3 a z - 2 a z - a z - a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | -4 3 1 1 1 2 1 3 2
q + -- + ------ + ------ + ------ + ------ + ------ + ------ + ------ +
2 22 9 20 8 18 8 18 7 16 7 16 6 14 6
q q t q t q t q t q t q t q t
3 3 4 3 3 4 3 4 2
> ------ + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
14 5 12 5 12 4 10 4 10 3 8 3 8 2 6 2 6
q t q t q t q t q t q t q t q t q t
2 t 2 2
> ---- + -- + q t
4 2
q t q |