© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a1
L11a1
L11a3
L11a3
L11a2
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a2

Visit L11a2's page at Knotilus!

Acknowledgement

L11a2 as Morse Link
DrawMorseLink

PD Presentation: X6172 X16,7,17,8 X4,17,1,18 X14,10,15,9 X8493 X10,5,11,6 X18,11,19,12 X20,14,21,13 X22,19,5,20 X12,22,13,21 X2,16,3,15

Gauss Code: {{1, -11, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -10, 8, -4, 11, -2, 3, -7, 9, -8, 10, -9}}

Jones Polynomial: - q-13/2 + 5q-11/2 - 11q-9/2 + 17q-7/2 - 24q-5/2 + 27q-3/2 - 27q-1/2 + 23q1/2 - 17q3/2 + 10q5/2 - 5q7/2 + q9/2

A2 (sl(3)) Invariant: q-20 - 2q-18 - q-16 + 4q-14 - 4q-12 + 4q-10 + 3q-8 - 2q-6 + 5q-4 - 5q-2 + 3 - 2q2 - 2q4 + 6q6 - 2q8 + 2q10 + 2q12 - q14

HOMFLY-PT Polynomial: - a-3z-1 + a-3z3 + 2a-1z-1 - 3a-1z3 - 2a-1z5 - 2az-1 + az + 5az3 + 3az5 + az7 + a3z-1 - a3z - 3a3z3 - 2a3z5 + a5z3

Kauffman Polynomial: a-4z4 - a-4z6 + a-3z-1 - a-3z - 5a-3z3 + 10a-3z5 - 5a-3z7 + 2a-2z2 - 12a-2z4 + 19a-2z6 - 9a-2z8 + 2a-1z-1 - 2a-1z - 17a-1z3 + 23a-1z5 + a-1z7 - 7a-1z9 + 1 + 7z2 - 39z4 + 57z6 - 22z8 - 2z10 + 2az-1 - 27az3 + 32az5 + 9az7 - 15az9 + 6a2z2 - 35a2z4 + 58a2z6 - 26a2z8 - 2a2z10 + a3z-1 + a3z - 21a3z3 + 35a3z5 - 8a3z7 - 8a3z9 + a4z2 - 5a4z4 + 16a4z6 - 13a4z8 - 6a5z3 + 15a5z5 - 11a5z7 + 4a6z4 - 5a6z6 - a7z5

Khovanov Homology:
trqj r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5
j = 10           1
j = 8          4 
j = 6         61 
j = 4        114  
j = 2       126   
j = 0      1511    
j = -2     1414     
j = -4    1013      
j = -6   714       
j = -8  410        
j = -10 17         
j = -12 4          
j = -141           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 2]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 2]]
Out[4]=   
PD[X[6, 1, 7, 2], X[16, 7, 17, 8], X[4, 17, 1, 18], X[14, 10, 15, 9], 
 
>   X[8, 4, 9, 3], X[10, 5, 11, 6], X[18, 11, 19, 12], X[20, 14, 21, 13], 
 
>   X[22, 19, 5, 20], X[12, 22, 13, 21], X[2, 16, 3, 15]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -3}, {6, -1, 2, -5, 4, -6, 7, -10, 8, -4, 11, -2, 3, -7, 
 
>    9, -8, 10, -9}]
In[6]:=
Jones[L][q]
Out[6]=   
  -(13/2)     5      11     17     24     27      27
-q        + ----- - ---- + ---- - ---- + ---- - ------- + 23 Sqrt[q] - 
             11/2    9/2    7/2    5/2    3/2   Sqrt[q]
            q       q      q      q      q
 
        3/2       5/2      7/2    9/2
>   17 q    + 10 q    - 5 q    + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -20    2     -16    4     4     4    3    2    5    5       2      4
3 + q    - --- - q    + --- - --- + --- + -- - -- + -- - -- - 2 q  - 2 q  + 
            18           14    12    10    8    6    4    2
           q            q     q     q     q    q    q    q
 
       6      8      10      12    14
>   6 q  - 2 q  + 2 q   + 2 q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 2]][a, z]
Out[8]=   
                       3                 3      3
   1       2    2 a   a           3     z    3 z         3      3  3    5  3
-(----) + --- - --- + -- + a z - a  z + -- - ---- + 5 a z  - 3 a  z  + a  z  - 
   3      a z    z    z                  3    a
  a  z                                  a
 
       5
    2 z         5      3  5      7
>   ---- + 3 a z  - 2 a  z  + a z
     a
In[9]:=
Kauffman[Link[11, Alternating, 2]][a, z]
Out[9]=   
                        3                               2
     1      2    2 a   a    z    2 z    3        2   2 z       2  2    4  2
1 + ---- + --- + --- + -- - -- - --- + a  z + 7 z  + ---- + 6 a  z  + a  z  - 
     3     a z    z    z     3    a                    2
    a  z                    a                         a
 
       3       3                                           4       4
    5 z    17 z          3       3  3      5  3       4   z    12 z
>   ---- - ----- - 27 a z  - 21 a  z  - 6 a  z  - 39 z  + -- - ----- - 
      3      a                                             4     2
     a                                                    a     a
 
                                       5       5
        2  4      4  4      6  4   10 z    23 z          5       3  5
>   35 a  z  - 5 a  z  + 4 a  z  + ----- + ----- + 32 a z  + 35 a  z  + 
                                     3       a
                                    a
 
                                6       6
        5  5    7  5       6   z    19 z        2  6       4  6      6  6
>   15 a  z  - a  z  + 57 z  - -- + ----- + 58 a  z  + 16 a  z  - 5 a  z  - 
                                4     2
                               a     a
 
       7    7                                            8
    5 z    z         7      3  7       5  7       8   9 z        2  8
>   ---- + -- + 9 a z  - 8 a  z  - 11 a  z  - 22 z  - ---- - 26 a  z  - 
      3    a                                            2
     a                                                 a
 
                  9
        4  8   7 z          9      3  9      10      2  10
>   13 a  z  - ---- - 15 a z  - 8 a  z  - 2 z   - 2 a  z
                a
In[10]:=
Kh[L][q, t]
Out[10]=   
     14     1        4        1        7        4      10       7      14
15 + -- + ------ + ------ + ------ + ------ + ----- + ----- + ----- + ----- + 
      2    14  6    12  5    10  5    10  4    8  4    8  3    6  3    6  2
     q    q   t    q   t    q   t    q   t    q  t    q  t    q  t    q  t
 
     10      13     14               2        2  2       4  2      4  3
>   ----- + ---- + ---- + 11 t + 12 q  t + 6 q  t  + 11 q  t  + 4 q  t  + 
     4  2    4      2
    q  t    q  t   q  t
 
       6  3    6  4      8  4    10  5
>   6 q  t  + q  t  + 4 q  t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a2
L11a1
L11a1
L11a3
L11a3