© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a193
L11a193
L11a195
L11a195
L11a194
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a194

Visit L11a194's page at Knotilus!

Acknowledgement

L11a194 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,4,11,3 X22,10,7,9 X16,6,17,5 X20,14,21,13 X18,16,19,15 X14,20,15,19 X12,22,13,21 X2738 X4,12,5,11 X6,18,1,17

Gauss Code: {{1, -9, 2, -10, 4, -11}, {9, -1, 3, -2, 10, -8, 5, -7, 6, -4, 11, -6, 7, -5, 8, -3}}

Jones Polynomial: - q-1/2 + 2q1/2 - 5q3/2 + 7q5/2 - 11q7/2 + 12q9/2 - 12q11/2 + 11q13/2 - 8q15/2 + 5q17/2 - 3q19/2 + q21/2

A2 (sl(3)) Invariant: q-2 + q2 + 3q4 - q6 + 3q8 + 2q10 + 2q14 - 2q16 - q20 - q22 + 3q24 - q26 + q30 - q32

HOMFLY-PT Polynomial: a-9z + a-9z3 - 2a-7z - 2a-7z3 - a-7z5 + 2a-5z - a-5z5 - a-3z-1 - 2a-3z - 2a-3z3 - a-3z5 + a-1z-1 + 2a-1z + a-1z3

Kauffman Polynomial: - a-12z2 + 3a-12z4 - a-12z6 + a-11z - 7a-11z3 + 10a-11z5 - 3a-11z7 + 4a-10z2 - 11a-10z4 + 13a-10z6 - 4a-10z8 + a-9z - 4a-9z3 - a-9z5 + 7a-9z7 - 3a-9z9 + 9a-8z2 - 23a-8z4 + 17a-8z6 - 3a-8z8 - a-8z10 - a-7z + 7a-7z3 - 19a-7z5 + 15a-7z7 - 5a-7z9 + 5a-6z2 - 10a-6z4 + 5a-6z6 - a-6z8 - a-6z10 - 3a-5z + 8a-5z3 - 7a-5z5 + 3a-5z7 - 2a-5z9 + 3a-4z4 - 2a-4z8 + a-3z-1 - 5a-3z + 7a-3z3 - 2a-3z7 - a-2 - a-2z2 + 4a-2z4 - 2a-2z6 + a-1z-1 - 3a-1z + 3a-1z3 - a-1z5

Khovanov Homology:
trqj r = -2r = -1r = 0r = 1r = 2r = 3r = 4r = 5r = 6r = 7r = 8r = 9
j = 22           1
j = 20          2 
j = 18         31 
j = 16        52  
j = 14       63   
j = 12      65    
j = 10     66     
j = 8    56      
j = 6   37       
j = 4  24        
j = 2 14         
j = 0 1          
j = -21           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 194]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 194]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 4, 11, 3], X[22, 10, 7, 9], X[16, 6, 17, 5], 
 
>   X[20, 14, 21, 13], X[18, 16, 19, 15], X[14, 20, 15, 19], X[12, 22, 13, 21], 
 
>   X[2, 7, 3, 8], X[4, 12, 5, 11], X[6, 18, 1, 17]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -9, 2, -10, 4, -11}, 
 
>   {9, -1, 3, -2, 10, -8, 5, -7, 6, -4, 11, -6, 7, -5, 8, -3}]
In[6]:=
Jones[L][q]
Out[6]=   
     1                      3/2      5/2       7/2       9/2       11/2
-(-------) + 2 Sqrt[q] - 5 q    + 7 q    - 11 q    + 12 q    - 12 q     + 
  Sqrt[q]
 
        13/2      15/2      17/2      19/2    21/2
>   11 q     - 8 q     + 5 q     - 3 q     + q
In[7]:=
A2Invariant[L][q]
Out[7]=   
 -2    2      4    6      8      10      14      16    20    22      24    26
q   + q  + 3 q  - q  + 3 q  + 2 q   + 2 q   - 2 q   - q   - q   + 3 q   - q   + 
 
     30    32
>   q   - q
In[8]:=
HOMFLYPT[Link[11, Alternating, 194]][a, z]
Out[8]=   
                                              3      3      3    3    5    5
   1       1    z    2 z   2 z   2 z   2 z   z    2 z    2 z    z    z    z
-(----) + --- + -- - --- + --- - --- + --- + -- - ---- - ---- + -- - -- - -- - 
   3      a z    9    7     5     3     a     9     7      3    a     7    5
  a  z          a    a     a     a           a     a      a          a    a
 
     5
    z
>   --
     3
    a
In[9]:=
Kauffman[Link[11, Alternating, 194]][a, z]
Out[9]=   
                                                       2       2      2
  -2    1      1     z    z    z    3 z   5 z   3 z   z     4 z    9 z
-a   + ---- + --- + --- + -- - -- - --- - --- - --- - --- + ---- + ---- + 
        3     a z    11    9    7    5     3     a     12    10      8
       a  z         a     a    a    a     a           a     a       a
 
       2    2      3      3      3      3      3      3      4       4
    5 z    z    7 z    4 z    7 z    8 z    7 z    3 z    3 z    11 z
>   ---- - -- - ---- - ---- + ---- + ---- + ---- + ---- + ---- - ----- - 
      6     2    11      9      7      5      3     a      12      10
     a     a    a       a      a      a      a            a       a
 
        4       4      4      4       5    5       5      5    5    6
    23 z    10 z    3 z    4 z    10 z    z    19 z    7 z    z    z
>   ----- - ----- + ---- + ---- + ----- - -- - ----- - ---- - -- - --- + 
      8       6       4      2      11     9     7       5    a     12
     a       a       a      a      a      a     a       a          a
 
        6       6      6      6      7      7       7      7      7      8
    13 z    17 z    5 z    2 z    3 z    7 z    15 z    3 z    2 z    4 z
>   ----- + ----- + ---- - ---- - ---- + ---- + ----- + ---- - ---- - ---- - 
      10      8       6      2     11      9      7       5      3     10
     a       a       a      a     a       a      a       a      a     a
 
       8    8      8      9      9      9    10    10
    3 z    z    2 z    3 z    5 z    2 z    z     z
>   ---- - -- - ---- - ---- - ---- - ---- - --- - ---
      8     6     4      9      7      5     8     6
     a     a     a      a      a      a     a     a
In[10]:=
Kh[L][q, t]
Out[10]=   
                           2
   2      4     1     1   q       4        6        6  2      8  2      8  3
4 q  + 2 q  + ----- + - + -- + 4 q  t + 3 q  t + 7 q  t  + 5 q  t  + 6 q  t  + 
               2  2   t   t
              q  t
 
       10  3      10  4      12  4      12  5      14  5      14  6
>   6 q   t  + 6 q   t  + 6 q   t  + 5 q   t  + 6 q   t  + 3 q   t  + 
 
       16  6      16  7      18  7    18  8      20  8    22  9
>   5 q   t  + 2 q   t  + 3 q   t  + q   t  + 2 q   t  + q   t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a194
L11a193
L11a193
L11a195
L11a195