© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a183
L11a183
L11a185
L11a185
L11a184
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a184

Visit L11a184's page at Knotilus!

Acknowledgement

L11a184 as Morse Link
DrawMorseLink

PD Presentation: X8192 X20,9,21,10 X14,5,15,6 X18,8,19,7 X10,4,11,3 X22,12,7,11 X16,13,17,14 X12,17,13,18 X6,15,1,16 X4,21,5,22 X2,20,3,19

Gauss Code: {{1, -11, 5, -10, 3, -9}, {4, -1, 2, -5, 6, -8, 7, -3, 9, -7, 8, -4, 11, -2, 10, -6}}

Jones Polynomial: q-15/2 - 5q-13/2 + 11q-11/2 - 17q-9/2 + 23q-7/2 - 27q-5/2 + 25q-3/2 - 23q-1/2 + 16q1/2 - 9q3/2 + 4q5/2 - q7/2

A2 (sl(3)) Invariant: - q-22 + 3q-20 - 2q-18 + 2q-14 - 6q-12 + 5q-10 + 4q-6 + 5q-4 - 3q-2 + 5 - 4q2 + 2q6 - 2q8 + q10

HOMFLY-PT Polynomial: - a-1z - 2a-1z3 - a-1z5 - az-1 + 2az + 4az3 + 3az5 + az7 + a3z-1 - 3a3z - a3z3 + 2a3z5 + a3z7 + a5z - a5z3 - a5z5

Kauffman Polynomial: a-3z3 - a-3z5 - 2a-2z2 + 5a-2z4 - 4a-2z6 + 2a-1z - 7a-1z3 + 11a-1z5 - 8a-1z7 - 2z2 - 2z4 + 11z6 - 10z8 + az-1 + 5az - 16az3 + 16az5 + az7 - 8az9 - a2 + 2a2z2 - 23a2z4 + 39a2z6 - 16a2z8 - 3a2z10 + a3z-1 + 5a3z - 12a3z3 + 26a3z7 - 17a3z9 + 2a4z2 - 29a4z4 + 47a4z6 - 16a4z8 - 3a4z10 + 2a5z - 7a5z3 + 5a5z5 + 12a5z7 - 9a5z9 - 12a6z4 + 22a6z6 - 10a6z8 - 3a7z3 + 9a7z5 - 5a7z7 + a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          3 
j = 4         61 
j = 2        103  
j = 0       136   
j = -2      1311    
j = -4     1412     
j = -6    1014      
j = -8   713       
j = -10  410        
j = -12 17         
j = -14 4          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 184]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 184]]
Out[4]=   
PD[X[8, 1, 9, 2], X[20, 9, 21, 10], X[14, 5, 15, 6], X[18, 8, 19, 7], 
 
>   X[10, 4, 11, 3], X[22, 12, 7, 11], X[16, 13, 17, 14], X[12, 17, 13, 18], 
 
>   X[6, 15, 1, 16], X[4, 21, 5, 22], X[2, 20, 3, 19]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -11, 5, -10, 3, -9}, 
 
>   {4, -1, 2, -5, 6, -8, 7, -3, 9, -7, 8, -4, 11, -2, 10, -6}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     5      11      17     23     27     25      23
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 16 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   9 q    + 4 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -22    3     2     2     6     5    4    5    3       2      6      8    10
5 - q    + --- - --- + --- - --- + --- + -- + -- - -- - 4 q  + 2 q  - 2 q  + q
            20    18    14    12    10    6    4    2
           q     q     q     q     q     q    q    q
In[8]:=
HOMFLYPT[Link[11, Alternating, 184]][a, z]
Out[8]=   
        3                                  3                             5
  a    a    z              3      5     2 z         3    3  3    5  3   z
-(-) + -- - - + 2 a z - 3 a  z + a  z - ---- + 4 a z  - a  z  - a  z  - -- + 
  z    z    a                            a                              a
 
         5      3  5    5  5      7    3  7
>   3 a z  + 2 a  z  - a  z  + a z  + a  z
In[9]:=
Kauffman[Link[11, Alternating, 184]][a, z]
Out[9]=   
           3                                             2
  2   a   a    2 z              3        5        2   2 z       2  2
-a  + - + -- + --- + 5 a z + 5 a  z + 2 a  z - 2 z  - ---- + 2 a  z  + 
      z   z     a                                       2
                                                       a
 
               3      3
       4  2   z    7 z          3       3  3      5  3      7  3      4
>   2 a  z  + -- - ---- - 16 a z  - 12 a  z  - 7 a  z  - 3 a  z  - 2 z  + 
               3    a
              a
 
       4                                             5       5
    5 z        2  4       4  4       6  4    8  4   z    11 z          5
>   ---- - 23 a  z  - 29 a  z  - 12 a  z  + a  z  - -- + ----- + 16 a z  + 
      2                                              3     a
     a                                              a
 
                                   6
       5  5      7  5       6   4 z        2  6       4  6       6  6    8  6
>   5 a  z  + 9 a  z  + 11 z  - ---- + 39 a  z  + 47 a  z  + 22 a  z  - a  z  - 
                                  2
                                 a
 
       7
    8 z       7       3  7       5  7      7  7       8       2  8       4  8
>   ---- + a z  + 26 a  z  + 12 a  z  - 5 a  z  - 10 z  - 16 a  z  - 16 a  z  - 
     a
 
        6  8        9       3  9      5  9      2  10      4  10
>   10 a  z  - 8 a z  - 17 a  z  - 9 a  z  - 3 a  z   - 3 a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
     11     1        4        1        7        4        10       7      13
13 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
      2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
     q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
     10      14      14      12     13              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 6 t + 10 q  t + 3 q  t  + 6 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 3 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a184
L11a183
L11a183
L11a185
L11a185