© | Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table:
L11a154
L11a154
L11a156
L11a156
L11a155
Knotscape
This page is passe. Go here instead!

The 2-Component Link

L11a155

Visit L11a155's page at Knotilus!

Acknowledgement

L11a155 as Morse Link
DrawMorseLink

PD Presentation: X8192 X10,3,11,4 X14,6,15,5 X20,11,21,12 X22,18,7,17 X18,22,19,21 X16,13,17,14 X12,19,13,20 X4,16,5,15 X2738 X6,9,1,10

Gauss Code: {{1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -8, 7, -3, 9, -7, 5, -6, 8, -4, 6, -5}}

Jones Polynomial: q-15/2 - 3q-13/2 + 6q-11/2 - 11q-9/2 + 14q-7/2 - 17q-5/2 + 17q-3/2 - 15q-1/2 + 11q1/2 - 7q3/2 + 3q5/2 - q7/2

A2 (sl(3)) Invariant: - q-24 + 2q-20 - 2q-18 + 2q-16 + 4q-14 - 2q-12 + 3q-10 - q-8 - q-6 + q-4 - 2q-2 + 5 - q2 + 3q6 - 2q8 + q12

HOMFLY-PT Polynomial: - a-3z - a-1z-1 + 2a-1z3 + 2az-1 + 2az + az3 - az5 - 2a3z-1 - 2a3z - a3z5 + a5z-1 + a5z + 2a5z3 - a7z

Kauffman Polynomial: - a-3z + 2a-3z3 - a-3z5 - 2a-2z2 + 5a-2z4 - 3a-2z6 - a-1z-1 + 3a-1z - 5a-1z3 + 8a-1z5 - 5a-1z7 + z2 - z4 + 5z6 - 5z8 - 2az-1 + 10az - 18az3 + 16az5 - 4az7 - 3az9 - a2 + 4a2z2 - 13a2z4 + 17a2z6 - 8a2z8 - a2z10 - 2a3z-1 + 10a3z - 18a3z3 + 10a3z5 + 5a3z7 - 6a3z9 + 3a4z2 - 14a4z4 + 19a4z6 - 7a4z8 - a4z10 - a5z-1 + 7a5z - 15a5z3 + 12a5z5 + a5z7 - 3a5z9 - 4a6z4 + 9a6z6 - 4a6z8 + 3a7z - 8a7z3 + 9a7z5 - 3a7z7 - 2a8z2 + 3a8z4 - a8z6

Khovanov Homology:
trqj r = -7r = -6r = -5r = -4r = -3r = -2r = -1r = 0r = 1r = 2r = 3r = 4
j = 8           1
j = 6          2 
j = 4         51 
j = 2        62  
j = 0       95   
j = -2      97    
j = -4     88     
j = -6    710      
j = -8   47       
j = -10  27        
j = -12 14         
j = -14 2          
j = -161           


Computer Talk. The data above can be recomputed by Mathematica using the package KnotTheory`. Following setup, the sample Mathematica session below reproduces most of the above data (Mathematica system prompts in blue, human input in red, Mathematica output in black):

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 30, 2005, 10:15:35)...
In[2]:=
Length[Skeleton[L]]
Out[2]=   
2
In[3]:=
Show[DrawMorseLink[Link[11, Alternating, 155]]]
Out[3]=   
 -Graphics- 
In[4]:=
PD[L = Link[11, Alternating, 155]]
Out[4]=   
PD[X[8, 1, 9, 2], X[10, 3, 11, 4], X[14, 6, 15, 5], X[20, 11, 21, 12], 
 
>   X[22, 18, 7, 17], X[18, 22, 19, 21], X[16, 13, 17, 14], X[12, 19, 13, 20], 
 
>   X[4, 16, 5, 15], X[2, 7, 3, 8], X[6, 9, 1, 10]]
In[5]:=
GaussCode[L]
Out[5]=   
GaussCode[{1, -10, 2, -9, 3, -11}, 
 
>   {10, -1, 11, -2, 4, -8, 7, -3, 9, -7, 5, -6, 8, -4, 6, -5}]
In[6]:=
Jones[L][q]
Out[6]=   
 -(15/2)     3       6      11     14     17     17      15
q        - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 11 Sqrt[q] - 
            13/2    11/2    9/2    7/2    5/2    3/2   Sqrt[q]
           q       q       q      q      q      q
 
       3/2      5/2    7/2
>   7 q    + 3 q    - q
In[7]:=
A2Invariant[L][q]
Out[7]=   
     -24    2     2     2     4     2     3     -8    -6    -4   2     2
5 - q    + --- - --- + --- + --- - --- + --- - q   - q   + q   - -- - q  + 
            20    18    16    14    12    10                      2
           q     q     q     q     q     q                       q
 
       6      8    12
>   3 q  - 2 q  + q
In[8]:=
HOMFLYPT[Link[11, Alternating, 155]][a, z]
Out[8]=   
                  3    5                                          3
   1     2 a   2 a    a    z               3      5      7     2 z       3
-(---) + --- - ---- + -- - -- + 2 a z - 2 a  z + a  z - a  z + ---- + a z  + 
  a z     z     z     z     3                                   a
                           a
 
       5  3      5    3  5
>   2 a  z  - a z  - a  z
In[9]:=
Kauffman[Link[11, Alternating, 155]][a, z]
Out[9]=   
                     3    5
  2    1    2 a   2 a    a    z    3 z                3        5        7
-a  - --- - --- - ---- - -- - -- + --- + 10 a z + 10 a  z + 7 a  z + 3 a  z + 
      a z    z     z     z     3    a
                              a
 
            2                                    3      3
     2   2 z       2  2      4  2      8  2   2 z    5 z          3
>   z  - ---- + 4 a  z  + 3 a  z  - 2 a  z  + ---- - ---- - 18 a z  - 
           2                                    3     a
          a                                    a
 
                                            4
        3  3       5  3      7  3    4   5 z        2  4       4  4      6  4
>   18 a  z  - 15 a  z  - 8 a  z  - z  + ---- - 13 a  z  - 14 a  z  - 4 a  z  + 
                                           2
                                          a
 
               5      5
       8  4   z    8 z          5       3  5       5  5      7  5      6
>   3 a  z  - -- + ---- + 16 a z  + 10 a  z  + 12 a  z  + 9 a  z  + 5 z  - 
               3    a
              a
 
       6                                              7
    3 z        2  6       4  6      6  6    8  6   5 z         7      3  7
>   ---- + 17 a  z  + 19 a  z  + 9 a  z  - a  z  - ---- - 4 a z  + 5 a  z  + 
      2                                             a
     a
 
     5  7      7  7      8      2  8      4  8      6  8        9      3  9
>   a  z  - 3 a  z  - 5 z  - 8 a  z  - 7 a  z  - 4 a  z  - 3 a z  - 6 a  z  - 
 
       5  9    2  10    4  10
>   3 a  z  - a  z   - a  z
In[10]:=
Kh[L][q, t]
Out[10]=   
    7      1        2        1        4        2        7        4       7
9 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- + 
     2    16  7    14  6    12  6    12  5    10  5    10  4    8  4    8  3
    q    q   t    q   t    q   t    q   t    q   t    q   t    q  t    q  t
 
      7      10       8      8      9              2        2  2      4  2
>   ----- + ----- + ----- + ---- + ---- + 5 t + 6 q  t + 2 q  t  + 5 q  t  + 
     6  3    6  2    4  2    4      2
    q  t    q  t    q  t    q  t   q  t
 
     4  3      6  3    8  4
>   q  t  + 2 q  t  + q  t


Dror Bar-Natan: The Knot Atlas: The Thistlethwaite Link Table: The Link L11a155
L11a154
L11a154
L11a156
L11a156