PD Presentation: |
X8192 X16,7,17,8 X10,4,11,3 X2,15,3,16 X14,10,15,9 X18,11,19,12 X12,5,13,6 X6,21,1,22 X20,14,21,13 X22,17,7,18 X4,20,5,19 |
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 30, 2005, 10:15:35)... |
In[2]:= | Length[Skeleton[L]] |
Out[2]= | 2 |
In[3]:= | Show[DrawMorseLink[Link[11, Alternating, 150]]] |
|  |
Out[3]= | -Graphics- |
In[4]:= | PD[L = Link[11, Alternating, 150]] |
Out[4]= | PD[X[8, 1, 9, 2], X[16, 7, 17, 8], X[10, 4, 11, 3], X[2, 15, 3, 16],
> X[14, 10, 15, 9], X[18, 11, 19, 12], X[12, 5, 13, 6], X[6, 21, 1, 22],
> X[20, 14, 21, 13], X[22, 17, 7, 18], X[4, 20, 5, 19]] |
In[5]:= | GaussCode[L] |
Out[5]= | GaussCode[{1, -4, 3, -11, 7, -8},
> {2, -1, 5, -3, 6, -7, 9, -5, 4, -2, 10, -6, 11, -9, 8, -10}] |
In[6]:= | Jones[L][q] |
Out[6]= | -(15/2) 5 12 20 27 32 31 28
q - ----- + ----- - ---- + ---- - ---- + ---- - ------- + 20 Sqrt[q] -
13/2 11/2 9/2 7/2 5/2 3/2 Sqrt[q]
q q q q q q
3/2 5/2 7/2
> 12 q + 5 q - q |
In[7]:= | A2Invariant[L][q] |
Out[7]= | -22 3 3 4 6 6 -8 2 5 4 2 6
7 - q + --- - --- + --- - --- + --- - q + -- + -- - -- - 4 q + 3 q -
20 18 14 12 10 6 4 2
q q q q q q q q
8 10
> 3 q + q |
In[8]:= | HOMFLYPT[Link[11, Alternating, 150]][a, z] |
Out[8]= | 3 3 5
a a z 3 3 3 5 3 z 5 3 5 5 5
-(-) + -- - a z - -- + a z + a z - a z - -- + 2 a z + 2 a z - a z +
z z a a
7 3 7
> a z + a z |
In[9]:= | Kauffman[Link[11, Alternating, 150]][a, z] |
Out[9]= | 3 3
2 a a 3 2 2 2 4 2 6 2 5 z
-a + - + -- - a z - a z + 2 z + 6 a z + 6 a z + 2 a z - ---- -
z z a
4
3 5 3 7 3 4 3 z 2 4 4 4
> 6 a z - 2 a z - 3 a z - 11 z + ---- - 36 a z - 36 a z -
2
a
5 5
6 4 8 4 z 14 z 5 3 5 5 5 7 5
> 13 a z + a z - -- + ----- + 9 a z - 18 a z - 4 a z + 8 a z +
3 a
a
6 7
6 5 z 2 6 4 6 6 6 8 6 12 z 7
> 24 z - ---- + 59 a z + 53 a z + 22 a z - a z - ----- + 11 a z +
2 a
a
3 7 5 7 7 7 8 2 8 4 8 6 8
> 47 a z + 19 a z - 5 a z - 17 z - 22 a z - 16 a z - 11 a z -
9 3 9 5 9 2 10 4 10
> 14 a z - 26 a z - 12 a z - 5 a z - 5 a z |
In[10]:= | Kh[L][q, t] |
Out[10]= | 13 1 4 1 8 4 12 8 15
16 + -- + ------ + ------ + ------ + ------ + ------ + ------ + ----- + ----- +
2 16 7 14 6 12 6 12 5 10 5 10 4 8 4 8 3
q q t q t q t q t q t q t q t q t
12 17 16 15 16 2 2 2 4 2
> ----- + ----- + ----- + ---- + ---- + 8 t + 12 q t + 4 q t + 8 q t +
6 3 6 2 4 2 4 2
q t q t q t q t q t
4 3 6 3 8 4
> q t + 4 q t + q t |